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6 RANDOMIZED EXPERIMENTAL DESIGNS 

It is the method of reasoning, and not the subject matter, 

that is distinctive of mathematical thought. A 

mathematician, if he is of any use, is of use as an expert in 

the process of reasoning, by which we pass from a theory to 

its logical consequences, or from an observation to the 

inferences which must be drawn from it. Sir Ronald Fisher 

At the beginning of the 20th century, Mill's methods defined the concept of 

control in experimental design. But, as we discussed in Chapter 3, there are 

problems in applying Mill's methods in experimental work in the social 

sciences because in these fields it is impossible to achieve the perfect 

control the methods require. In psychology, there always will be 

uncontrolled variables introduced by the many differences among people—

in attitudes, personality, abilities, and prior experiences. 

Given such uncontrollable variables, how can experimenters reach valid 

conclusions from the results of experiments? We discussed one solution to 

this problem, involving correlational analysis, in the last chapter; if the 

uncontrolled variables can be measured, their effects can be corrected for 

by statistical methods. In this chapter, we consider a second solution to the 

problem of uncontrolled variables, one developed by Sir Ronald A. Fisher, a 

British scientist, who was a follower of Galton's ideas in eugenics and a 

colleague of Pearson and Yule. 

Fisher's innovative experimental designs incorporated the controls of Mill's 

methods and introduced the new technique of randomly assigning subjects 

to treatments. Today his methods are the standard of excellence for 

experimental research. 

Fisher was a child prodigy in mathematics. He graduated from Cambridge 

University in England in 1913, with concentrations in mathematics and the 

new field of genetics. When World War I interrupted his scientific career, 

Fisher was excluded from military service because his eyesight was poor. So 

he did "war work" instead, and took the teaching position of another man 

who went to war. On Armistice Day, he quit teaching, which was not to his 

liking, and started looking for another job. 
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Fisher was considering two very different careers—subsistence farming, an 

occupation that would let him live an "ideal eugenic life" and raise a large 

family, and research in the new field of biometry, the application of 

mathematics to biology and genetics. While deliberating on these radically 

different alternatives, he heard of an available position for a statistician at 

the experimental agriculture research station at Rothamsted. Although this 

was just a temporary position, analyzing data already collected at the 

station, the unusual combination of mathematics and farming must have 

attracted him, because he decided to set aside his dream of subsistence 

farming and take the position. Fisher's choice was fortunate for science. 

The director of the research station soon realized Fisher's immense talent 

and the temporary job was made long-term: "It took me a very short time 

to realize that he was more than a man of great ability, he was in fact a 

genius who must be retained" (Box, 1978, p. 97). Within a few years, Fisher 

would develop a remarkable theory of experimentation, complete with 

experimental designs and a method of data analysis, which he called the 

analysis of variance. 

Fisher's experimental designs were presented in a 1926 paper entitled "The 

Arrangement of Field Experiments." In this paper Fisher developed the logic 

and the advantages of his new methods. We will introduce his methods by 

closely following the examples from agriculture that he used in that paper; 

these examples illustrate the logic of the methods especially clearly. Once 

the basic designs are discussed, we will go on to consider how they are 

applied in psychology. 

6.1 A MEASURE OF ERROR 
Imagine, as Fisher did, a large field divided into two equal plots. Wheat is 

planted in both plots and the plots are treated exactly the same except that 

one is fertilized and the other is not. For convenience, let's refer to the 

fertilized plot as Al and the other plot as A2. The experimenter wants to 

discover the effect of the fertilizer on wheat yields. 

The design of this experiment follows the logic of the method of difference: 

Only one antecedent is different for the two plots, Al versus A2 (the 

independent variable), while other variables are controlled. According to 

Mill's method, if a difference is found in the wheat yields of the two plots 

(the dependent variable), it would be due to the fertilizer. 
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Let's say, as Fisher did, that plot Al produces the greater yield. To make the 

outcome numerical, say that Al yields 100 bushels and A2 yields 82 bushels. 

Mill's method would lead to the conclusion that the 18-bushel advantage of 

Al over A2 is due to the fertilizer. However, in practice, we couldn't be 

confident in drawing this conclusion—because Mill's method could not be 

applied perfectly. It is not possible to control for every difference between 

the plots. Plot Al might have better soil than A2, or better drainage, or less 

insect or bird damage. As Fisher put it, "What reason is there to think that, 

even if no [fertilizer] had been applied, the [plot] which actually received it 

would not still have given the higher yield?" (Fisher, 1926, p. 504). 

TABLE 1 FARMER'S RECORDS COMPARING 

WHEAT YIELDS (IN BUSHELS) OF PLOTS A1 

AND A2 

Year Plot A1 Plot 2l A1-A2 

1906 88 80 +8 

1907 89 87 +2 

1908 84 90 -6 

1909 95 100 -5 

1910 94 92 +2 

1911 85 80 +5 

1912 80 79 +1 

1913 87 83 +4 

1914 79 85 -6 

1915 87 90 -3 

1916 93 92 +1 

1917 98 87 +11 

1918 98 90 +8 

1919 95 97 -2 

1920 94 89 +5 

1921 86 80 +6 

1922 82 77 +5 

1923 82 85 -3 

1924 91 87 +4 

 

Here, then, is a perfect illustration of the major problem with the method of 

difference. The advantage of Al could be due to the fertilizer, or due just to 
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uncontrolled events. How can the researcher decide between these 

possibilities? Fisher considered two types of evidence that might help. First, 

what if the farmer stated that he chose the plots fairly and had no reason to 

believe that one plot had better soil than the other? Or second, what if the 

farmer had kept records over several years of the wheat yields of these two 

plots? Fisher dismissed the farmer's opinion as evidence, since it could not 

be substantiated, but he felt the records would provide valuable 

information. 

Let's say the farmer had records for the past 19 years of the wheat yields 

for both plots without fertilizer on either plot. Table 1 shows these 

yields; the difference in the yields of the plots also is shown there and 

plotted as a histogram in Figure 1.  

The results for the first 19 years show the differences in the yields of plots 

Al and A2 when the plots were treated uniformly; these differences would 

be due to uncontrolled variables. The differences vary from +11 bushels 

(the greatest advantage for Al) to -6 bushels (the greatest advantage for 

A2). Now compare these differences with the result of the experiment, 

which is marked on the histogram. Not once in the 19 years did Al have an 

advantage as large or larger than the 18-bushel advantage that occurred 

when Al was fertilized. 

 

On the basis of this finding, Fisher concluded: "Either there is something in 

the treatment, or a coincidence has occurred such as does not occur more 

than once in twenty trials" (Fisher, 1926, p. 504). 

What kind of coincidence? The coincidence would be that the year selected 

for the experiment just happened to be the year of the maximum 
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advantage observed for plot Al, the actual effect of the fertilizer being nil. If 

the fertilizer is ineffective, the probability of this coincidence is 1/20, or 5%. 

Since Fisher judged this probability small enough to argue against the 

hypothesis that the fertilizer was ineffective, he concluded that the fertilizer 

was effective. 

With this design, Fisher offered a solution to the problem of the method of 

difference. By collecting additional information on the results that would 

occur due just to uncontrolled variables, the researcher would be able to 

make a reasoned decision about the effectiveness of the treatment. Using 

this design, however, it would take many years to complete even a simple 

experiment. But Fisher didn't intend this method as a practical model for 

research. In presenting this design, he wanted only to show the kinds of 

information needed to interpret the outcome of the experiment. He argued 

that: 

what is required to interpret the outcome of an experiment is a 

valid measure of error, a measure of which outcome will occur 

due to uncontrolled variables. 

This is the heart of Fisher's approach—finding a valid measure of error. Mill 

had argued for perfect control in the experiment, so that errors could be 

reduced to zero. Because Mill's solution is impossible to achieve in practice, 

Fisher proposed to measure the extent of the error instead, and to use 

this measure in interpreting the outcome of the study. From Fisher's 

viewpoint, if you can't eliminate all error, the best alternative is to measure 

it, so that you can take account of the error in drawing your conclusions. 

 

Fisher went on to show how to derive this measure of error from 

experiments that could be done in a single growing season. We will discuss 

his designs with one independent variable in this chapter and devote 

Chapter 8, Factorial Designs and Interactions, to the more complex designs 

with more than one independent variable. 
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6.2 THE RANDOMIZED BLOCKS DESIGN 
Fisher's randomized blocks design, now a standard in psychological 

research, was used first in agriculture. The researcher would divide the field 

chosen for the experiment into a number of smaller areas, called blocks. 

Let's pick 10 as a number to work with. Each of the 10 blocks would be 

further divided into two plots. Then, within each block one plot would be 

randomly selected, say, by a coin toss, to receive treatment Al, the 

fertilizer, and the other would receive no fertilizer, treatment A2. Figure 2 

shows a randomly selected arrangement of the treatments in the field. 

Notice that treatments Al and A2 appear in each of the 10 blocks, but their 

positions within the block vary randomly. 

6.2.1 Replication 

At the end of the growing season, the crops on each of the 20 plots would 

be harvested and their yields measured and recorded. As in the previous 

design, half of the total area of the field would be treated with fertilizer and 

half would not. But now, instead of comparing the yields in the two halves 

of the field, we can compare yields within each of the 10 blocks. In effect, 

the original experiment is replicated 10 times using smaller plots, and the 

method of difference is applied 10 times, once in each block. This 

replication, an innovation of Fisher's, is necessary to measure the error in 

the experiment. 

Replication, a major feature of all of Fisher's designs, was not 

present in any of Mill's methods. 

6.2.2 Random Assignment 

The random assignment of treatments to plots (or randomization) is the 

second major feature of this design. 

With random assignment, each plot has an equal probability of 

receiving each treatment. 

randomization is done for two reasons. First,  

randomization avoids any bias that may occur if a nonrandom or 

systematic assignment is used. 
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If, for example, representatives from the fertilizer company made the 

assignment, they might select the better looking soil to receive the 

fertilizer, thereby creating a bias in the study. Even a neutral observer might 

bias the assignment unconsciously. Also, a systematic assignment, such as 

alternating the treatments in successive plots (for example, Al A2 Al A2), 

could bias the study if uncontrolled soil conditions in the field also had this 

pattern of variation. 

The second reason for using random assignment is that 

random assignment is necessary to determine a valid measure of 

error for the experiment, a measure of which outcomes to expect 

due to uncontrolled variables. 

Without this measure of error, there is no good way to interpret the results 

of the study. 

Random assignment, like replication, was not used in Mill's 

methods. 

Fisher felt that randomization was so critical for experimentation that he 

and a colleague published tables of random numbers to make it easy for 

researchers to randomly assign treatments (Fisher & Yates, 1953). 

6.2.3 Determining the Measure of Error 

Now let's look closely at the outcome of the experiment to see why 

randomization and replication are necessary to calculate a measure of 

error. Figure 3 shows the wheat yields in bushels for each of the 20 plots in 

the field. 

The average yield for the plots getting Al is 26.0 bushels; the average yield 

for A2 is 23.7 bushels. These means were calculated by adding the yields for 

each type of plot and dividing by the total number of plots getting that 

treatment, 10 in this case. Since the distribution of yields across different 

plots is expected to have a normal distribution, the mean is the appropriate 

summary statistic. 

The results show that the mean difference between the fertilized and 

unfertilized plots is 26.0 - 23.7 = 2.3 bushels per plot, the advantage going 

to the fertilized plots. The question is whether this difference is due to the 
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fertilizer or uncontrolled variables, such as soil fertility or bird damage? To 

answer this question, we need a measure of error. Fisher's solution to this 

problem was ingenious. 

 

Assume, for now, that the fertilizer is completely ineffective. If this is true, 

what we have done in the study is simply to label plots of the field randomly 

as Al or A2 and compare the means of plots that have been given these 

arbitrary labels. If the fertilizer is ineffective, plots Al and A2 actually were 

treated uniformly, and the observed mean difference of 2.3 bushels would 

be a result of uncontrolled variables. 

With a different assignment of labels, the outcome of the study would have 

been different. Figure 4 shows a different labeling done following the same 

scheme of randomization used in the actual experiment. 

With this labeling, and assuming the fertilizer does not work, the mean 

difference between the plots would have been -1.5 bushels. Figure 5 shows 

yet another labeling that could have happened. With this labeling, the mean 

difference would be +1.1 bushels. 

If we continued relabeling the plots and computing the resulting mean 

difference, we would end up with a set of values for the mean difference, 

values that would be expected if the fertilizer did not work. These values 

show us the mean differences to expect due just to uncontrolled variables. 

This set of values is exactly the measure of error we are looking 

for! 
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Fisher thought that 500 values would be sufficient to accurately measure 

the error of the study We did the relabeling 500 times and recorded the 

resulting mean differences. They are collected and presented in the 

histogram in Figure 6. 

6.2.4 The Null Hypothesis 

The histogram shows the mean differences between plots Al and A2 that 

would be expected if the fertilizer is ineffective.  

Fisher called the hypothesis that the fertilizer is ineffective the 

null hypothesis. 

 

The null hypothesis in an experiment states that the 

independent variable has no effect on the dependent variable. 

The histogram shows that the mean differences, given that the null 

hypothesis is true, range from a low of -3 bushels to a maximum of +3 

bushels. 

6.2.5 The Significance Probability, p 

Now we can compare the outcome of the study with this measure of error. 

The actual outcome, a mean difference of 2.3 bushels, is marked on the 

histogram. In the 500 relabelings, only 9 assignments gave a mean 

difference of 2.3 or more. If the fertilizer is ineffective, the probability of 

getting a mean difference of 2.3 or more is p = 9/500 = .018. 
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The statistic p is the significance probability for the test of the null 

hypothesis. 

The significance probability, p, is the probability, if the null 

hypothesis is true, of getting the observed mean difference or an 

even larger value. 

6.2.6 Interpreting p 

Fisher contended that the conclusion drawn from a study should depend 

upon the value of p. He suggested that the cutoff point of p = .05 be used in 

reaching a conclusion according to the following rule: 

If p is less than or equal to .05, p < .05, then reject the null hypothesis, 

since the results are inconsistent with this hypothesis. 

If p is greater than .05, p > .05, then do not reject the null hypothesis, since 

in this case the results are consistent with this hypothesis. 

If you remember from Chapter 4, the cutoff point for p is called the alpha 

(a) level of the test. In our example, p = .018, which is less than the a = .05 

(5%) cutoff point, so the null hypothesis is rejected. The conclusion is that 

there is good evidence that the fertilizer works. 

When the null hypothesis is rejected, the result, the observed mean 

difference, is said to be statistically significant at the 5% alpha level or 

the 5% level of significance. 

The level of significance is the alpha level, the cutoff point for p 

in reaching a conclusion about the null hypothesis; 5% is the 

accepted standard today. 

It is important to realize that this evidence, a statistically significant mean 

difference, is not proof that the fertilizer worked, just good evidence that 

it worked. 

A statistically significant result is one that is unlikely to occur due 

just to the uncontrolled variables in a study. 
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But it may have occurred. In fact, if the fertilizer is ineffective, the 

conclusion of the statistical test will be wrong 5% of the time. Because of 

the possibility of this error in interpretation, it is necessary to replicate 

experimental results in many different studies before they become 

accepted as fact. According to Fisher: 

A scientific fact should be regarded as experimentally established 

only if a properly designed experiment rarely fails to give this 

[5%] level of significance. (Fisher, 1926, p. 504) 

The randomized blocks design is a practical design for agriculture that takes 

only a single growing season to yield results. The statistical procedure of 

doing 500 relabelings, called a randomization test or a Monte Carlo test, 

is practical today because we have computers. In the 1920s, it took hours of 

boring work by hand. 

6.2.7 The t Test 

Fisher recommended using an approximation to the randomization test to 

avoid these laborious computations. In 1908, William Gosset, a colleague of 

Pearson's, publishing under the name "Student," developed a statistical 

test, called the t test (Student, 1908). 

The t test is used to test for differences between the means of 

two groups in a study in which the subjects are randomly sampled 

from a large (actually infinite) population. 

Even though in the randomized blocks design the subjects (plots of land) are 

not randomly selected from a large population, Fisher showed that 

Student's t test was a good approximation to the randomization test. 
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FIGURE 7 

Completely randomized design with two 

treatments, Al and A2, and with 20 plots. 

Student's t test is quick and easy to compute. A value of the statistic, called 

i, is computed from the results of the study, and this value can be looked up 

in a table to see if the mean difference is significant. The computations and 

use of the table are presented in statistics texts. Today, even though 

modern computers make calculating Fisher's preferred test, the 

randomization test, easy, the t test is still the more popular procedure. In 

most cases, the choice between these two tests is, as they say, "academic," 

since their results agree closely; in the example computed above, the 

randomization test gives p = .018; the t test gives p = .013. 

If you go to any shopping mall today, you will be able to find inexpensive 

pocket calculators that have the t test built in; the user only has to enter 

the data from a study and the computer does the entire computation. 

Student would have been shocked to learn how popular his test would 

become. Its popularity is due to the fact that it can be used with Fisher's 

designs. 

6.3 COMPLETELY RANDOMIZED DESIGN AND THE LATIN SQUARE DESIGN 
In the completely randomized design, instead of using the blocking of 

the randomized blocks design, the treatments are randomly assigned to 

plots throughout the whole field. The field is divided into a number of plots 

and the treatments are randomly assigned to them. When two treatments, 

Al and A2, are being compared, half the plots are randomly assigned to Al 

and the other half go to A2. Figure 7 shows a completely randomized design 

with 20 plots. 

Because the pattern of randomization is different in this design than in the 

randomized blocks design, the computations of the statistical test also are 

different. Fisher developed a modification of Student's t test, called the t 

test for independent groups, as an approximation to the randomization test 

for this case. 

As we will see, the completely randomized design is popular in psychology, 

but it is used infrequently in agriculture because of the possibility of an 

apparent imbalance in the assignment of treatments to plots. If most of the 
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Al treatments were assigned by chance to the north section of a field and 

most of the A2 treatments ended up in the south section, there would be 

an apparent bias in the study. No experimenter would want to conduct an 

agricultural study with this assignment. The randomized blocks design 

avoids this type of apparent bias by restricting the random assignments to 

within blocks, guaranteeing that both treatments are applied evenly all over 

the field. 

 

Fisher's Latin square design also uses very restricted randomization to 

avoid apparent bias in assignments. In the Latin square design, the field first 

is divided into rows and columns, the number of rows and columns 

corresponding to the number of treatments being compared. With 2 

treatments, there would be 2 rows and 2 columns; with 5 treatments, there 

would be 5 rows and 5 columns. Treatments are assigned to this grid so that 

one and only one treatment falls in any given row or column. 

Figure 8 illustrates how the Forestry Commission in Wales used a 5 x 5 Latin 

square to study the effects of altitude on the growth of different varieties of 

pine trees at Bettgelert Forest in 1929. The researchers laid out the Latin 

square on a steep hill so that each row was at a different elevation. Soil 

fertility at each altitude was controlled by randomly assigning different 
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varieties and combinations of trees to different positions in the row. The 

photograph, taken 16 years after planting, clearly shows the differential 

effects of altitude on the trees. 

Fisher published tables giving all possible arrangements of treatments for 

Latin squares of sizes 2, 3, 4, 5, and 6. The experimenter would lay out the 

field in the appropriate number of rows and columns and then pick at 

random an arrangement of treatments from Fisher's table. This 

randomization ensures that there will be no systematic bias and provides 

the basis for the measure of error in the study. Again, since the pattern of 

randomization is different from the previous designs, the calculations of the 

statistical test also are different. 

The computations of the Latin square are found in advanced statistics texts 

and in handbooks of experimental design (see Kirk, 1982). 

The Latin square is a popular design in agriculture because it does a good 

job of controlling for gradients of soil fertility in a field. Imagine that the soil 

in the field is best at the north end and becomes progressively worse going 

from north to south. In the Latin square design each treatment appears in 

each row and column, so each treatment would be equally applied to the 

good and poor soil, thus controlling for soil quality. Gradients of soil fertility 

are common, so the Latin square design is well suited for agricultural 

research. 

Fisher's randomized designs were revolutionary. When Fisher proposed 

them, other scientists were recommending systematic designs for 

agricultural experiments. They were skeptical at first about Fisher's 

randomization method. Student, for example, thought that some 

systematic designs would result in a smaller error than randomized designs 

and therefore would be more sensitive. As late as the 1940s, agriculture 

texts posed the question of which design, systematic or random, was better 

(Leonard & Clark, 1939). 

Today, systematic designs are not even classified as "true" experiments (see 

Chapter 10, Field Research). When either type of design is possible, 

randomized designs are preferred. Randomized designs replaced systematic 

designs for the reasons Fisher presented in his 1926 paper: 
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Random assignment avoids any systematic bias in assigning 

treatments and is essential for calculating a valid measure of 

error. 

6.4 FISHER’S DESIGNS IN PSYCHOLOGY 
Fisher developed his designs for agricultural research. In psychology we are 

not interested in treating plots of land, and our subjects do not come laid 

out in a field so that they can be easily blocked, and we do not face 

problems of bird damage or differences in soil fertility. But there are 

enough parallels between agricultural studies and psychological 

experiments to make Fisher's designs the methods of choice for 

experiments in psychology. Table 2 outlines these similarities. 

The subjects in psychological research are people or animals. The 

independent variable is the type of treatment they receive. The treatments, 

in psychology, vary widely, from schedules of reinforcement, to differently 

shaped visual stimuli, to different types of psychotherapy. The dependent 

variable is a measure of the subjects' behavior in the study, behavior that is 

thought to be influenced by the independent variable. The dependent 

variable might be the rate of bar pressing in an animal learning experiment, 

the perceived intensity of a stimulus in a perception study, or the severity of 

depression in research evaluating psychotherapy. 

In the completely randomized design, subjects are randomly assigned to 

treatments with the sole restriction being that equal numbers of subjects 

be assigned to each treatment. (Equal numbers are not necessary but do 

lead to the most sensitive design; see the discussion of power later in this 

chapter.) 

TABLE 2 COMPARISON OF AGRICULTURAL AND 

PSYCHOLOGICAL EXPERIMENTS 

 

Term Agriculture Psychology 

Subjects Plots in field. People (or animals) who 

meet the criteria for 

inclusion. 
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Independent variable Different treatments 

applied to the soil 

Different treatments 

given to the subjects. 

Dependent variable Measure of yield of crops, 

e.g., wheat yield in bushels  

Measure of subjects' 

behavior, e.g., severity 

of depression 

Random assignment Random assignment of 

plots to treatments. 

Random assignment of 

subjects to treatments. 

Completely 

randomized design 

Plots in field are randomly 

assigned to treatments 

with the only restriction 

being that equal numbers 

of plots are assigned to 

each treatment. 

Subjects are randomly 

assigned to treatments 

with the only restriction 

being that equal 

numbers of subjects are 

assigned to each 

treatment. 

Randomized Blocks 

design 

The field is divided into 

blocks, blocks are 

subdivided into plots, and 

then plots within a block 

are randomly assigned to 

treatments. Random 

assignment is restricted to 

within blocks. 

Subjects are divided 

into blocks. A block is a 

group of subjects who 

are similar to each 

other on specified 

criteria. Subjects within 

each block are 

randomly assigned to 

treatments. Random 

assignment is restricted 

to within blocks. 

Latin square design Randomization is 

restricted to preset 

patterns of applying 

treatments to the plots. 

The patterns have each 

treatment in the study in 

each "row" and "column" 

of the field.  

Randomization is 

restricted to preset 

patterns of assigning 

subjects to treatments. 

The design is used in 

psychology to test for 

effects within subjects. 

Conditions held 

constant 

Application of seed, 

preparation of soil, 

duration of study, method 

of harvest, amount of 

watering and weeding, etc. 

Initial description of 

study to subjects, 

duration of study, 

instructions, methods of 
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measuring dependent 

variables, etc 

Uncontrolled events Bird damage, weather, 

insect damage, etc. 

Equipment failure, 

experimenter mistakes 

in the protocol, fire 

alarm during study, 

missed appointments, 

etc 

Uncontrolled 

differences among 

subjects 

Differences in soil fertility, 

water drainage, etc 

Differences in 

personality, abilities, 

interests, past history, 

etc. 

 

One way to assign subjects randomly to treatments is to write their names 

on pieces of paper, put the pieces in a hat, shake well, pick out half the 

subjects for one treatment, and assign the remaining subjects to the other 

treatment. 

Another method of randomly assigning subjects to treatments is by 

computer. We have included computer programs for random assignment in 

Chapter 12, Planning the Study. 

The randomized blocks design uses more restricted random assignment to 

groups than the completely randomized design. In agriculture, adjacent 

plots of land form a block and the randomization takes place within blocks. 

Because adjacent plots should be more similar in soil fertility than 

nonadjacent plots, blocking helps to control for differences in fertility. The 

best parallel to adjacent plots in psychology would be identical twins. Each 

pair of twins would be one block; the study would have several blocks. 

Within each block, one twin would be randomly assigned to one treatment 

and the other would get the second treatment. Since twins are similar in 

many ways, the study would achieve good control over differences among 

the subjects. 

Twin studies are rare because so few twins are available. But, as the 

following experiment illustrates, when twin studies can be done they often 

are models of control. One recent well designed experiment in medicine, 
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for example, may change the way parents feed their children (Johnston et 

al., 1992). This 3-year study examined the effects of calcium supplements 

on the bone density of 70 pairs of identical twins, ages 6 to 14. One twin in 

each pair was randomly chosen to receive 1,000 mg of calcium daily; the 

other received a placebo that only looked and tasted like the calcium 

supplement. The results showed that the supplements increased the 

children's bone density. 

If twins are not available, the next best alternative is for researchers to form 

the blocks themselves. 

Subjects can be paired, or matched, based on their similarity on 

variables that the experimenter wishes to control. 

Matching might be done on sex, age, education, ability, or degree of illness, 

for example. Random assignments then would be made by selecting 

subjects for each of the treatments from within these matched blocks of 

subjects. 

In agricultural research using the Latin square design, the treatments are 

assigned to different plots of a field so that each treatment falls only once 

in each "row" and "column" of the field. In psychology, there is no single 

parallel to the rows and columns of a field. 

A common application of the Latin square in psychology is in 

experiments where each subject receives all of the treatments at 

different times. 

Let's say a psychologist wants to study the effects of caffeine on cognitive 

functioning, as measured by performance on simple arithmetic problems. 

The researcher decides to use a within-subjects design. Each subject 

receives each of four doses of caffeine: no caffeine, dose 0; low caffeine, 

dose 1; medium caffeine, dose 2; and high caffeine, dose 3. To minimize 

carryover effects, a one-day interval is planned between the doses. 

Figure 9 shows a Latin square design for this study. The columns of the 

square correspond to the orders, 1st, 2nd, 3rd, or 4th, of administering the 

doses. The rows correspond to groups of subjects. All the subjects in a 

group receive the doses of caffeine in the same order. The subjects are 
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randomly assigned to the groups. The entries in the square show the 

specific doses. The subjects in Group 1, for example, are tested first on dose 

2, then dose 0, followed by dose 3, and finally, on the fourth day, dose 1. 

This particular arrangement of doses was picked at random from a table of 

possible 4x4 Latin squares (Fisher & Yates, 1953). 

                                                       Order 

 1st 2nd 3rd 4th 

Group 

1 

dose 2 dose 0 dose 3 dose 1 

Group 

2 

dose 0 dose 1 dose 2 dose 3 

Group 

3 

dose 1 dose 3 dose 0 dose 2 

Group 

4 

dose 3 dose 2 dose 1 dose 0 

 

Figure 9.  Latin square design showing the order of giving 4 different doses 

of caffeine to 4 groups of subjects. 

The Latin square balances the order of administering the caffeine. Each 

dose is given to one group of subjects in each possible order; that is, dose 0 

is presented first to one group; dose 1 is presented first to another group, 

etc. This helps to control for carryover effects and to balance out any 

effects of practice on test taking. 

In the next section, we present three psychology experiments to illustrate 

the completely randomized design, the randomized blocks design, and the 

Latin square. The Rush, Beck, Kovacs, and Hollon experiment (1977) was the 

first to find that a psychotherapy was better than a standard drug therapy 

for a major psychiatric disorder. The study by Held and Hein (1963) 

established a basic fact about the development of visual perception. The 

findings of the study by Wolraich et al. (1994) contradict conventional 

wisdom about the effects of sugar on children's behavior. 

6.4.1 Completely Randomized Design: Evaluating Cognitive Therapy 

In the mid 1970s, cognitive psychotherapy was a promising treatment for 

depression. Clinical experience treating patients was positive; however, the 
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effectiveness of the therapy had not been tested in a controlled experiment 

using random assignment of patients to treatments. In 1977, Rush et al. 

published the first such test. 

The subjects were depressed patients referred to the University of 

Pennsylvania Hospital for treatment. To participate in the study, patients 

had to meet rigorous inclusion criteria, including moderate to severe levels 

of depression, a diagnosis of depressive syndrome based on published 

criteria, no history of schizophrenia or alcoholism, and no contraindications 

for antidepressant medication. Over 110 applicants were screened to find 

the 41 patients included in the study. 

The patients signed a consent form agreeing to receive either cognitive 

therapy or drug therapy with imipramine, a tricyclic antidepressant (a 

standard drug therapy for depression). Then they were randomly assigned 

to one of the therapies. The severity of each patient's depression was 

monitored throughout the 12-week treatment using three measures: the 

Beck Depression Inventory, the Hamilton Rating Scale for Depression, and 

the Raskin Depression Scale. 

At the end of the treatment, the mean depression scores on all three 

measures of patients in the cognitive therapy group were significantly lower 

than those in the drug therapy (p < .05). This study, published in 1977, in 

volume 1 of a new journal, Cognitive Therapy and Research, inspired 

many other studies of cognitive therapy. 

6.4.2 Randomized Blocks Design: Stimuli Necessary for Perceptual 

Development 

By the early 1960s, there was evidence that normal vision in cats depends 

upon their experiencing varied visual stimulation as kittens. Kittens 

deprived of normal stimulation, either by being physically restrained or by 

having their eyes covered with hoods that let in only diffuse light, later 

showed visual deficiencies when compared to litter mates raised normally. 

Based on these results, Richard Held and Alan Hein (1963) considered two 

alternative hypotheses about the kind of stimulation needed for normal 

visual development. According to one hypothesis, stimulation received 

while the animal is passive would be sufficient to produce normal vision. 

According to the second hypothesis, young animals must be free to create 

changes in their visual stimulation through their own movements for 

normal vision to occur. 
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To decide between these hypotheses, Held and Hein tested 8 pairs of 

kittens, each pair from a different litter. All 16 kittens were raised in 

darkness until they were strong enough to be in the study (at 8 to 12 

weeks). Then they were exposed to carefully controlled visual stimulation 

for three hours a day. One kitten in each pair was randomly assigned to the 

"Active" condition and the other to the "Passive" condition. The active 

member (A) of the pair was allowed to walk inside an illuminated circular 

pen that was 4 feet in diameter with 1-inch-wide black-and white vertical 

stripes on its wall. The passive member (P) was placed on the other side of 

the pen from A, in a physical apparatus with rods, gears, and pulleys that 

operated so that when A moved, P moved an equivalent distance. 

The apparatus permitted P to make only slight head and eye movements on 

its own. By this means the visual stimulation of both kittens was kept nearly 

equal; but A's stimulation was self-produced, whereas P's was not. Each pair 

thus provided a test between the two hypotheses. 

This study involved two types of matching. First, the kittens in each pair 

were litter mates; so they were expected to be more similar to each other 

than unrelated kittens. Second, the kittens in each pair were "yoked" 

together; that is, they were placed in an apparatus that operated so that 

the movements of the active kitten controlled the visual stimulation of the 

passive one. 

Designs in which one subject's behavior controls the outcome of 

another are called yoked control designs; these designs are 

used to control for variables that are directly affected by the 

behavior of the subjects themselves. 

Held and Hein used this design to control the variety of visual stimulation 

presented to both kittens, while simultaneously allowing one kitten to be 

active and one to be passive. 

The daily experimental sessions continued until one member of the pair 

could pass the "paw placement test." In this test, the kitten was carried 

forward and downward toward the edge of a table; it passed if it showed 

visually mediated anticipation of contact by extending its paws as it 

approached the table. As soon as one of the kittens passed, both kittens 

were given additional visual tests. 
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The results confirmed the researchers' expectations: In each pair, the active 

kitten passed the paw placement test first (p < .05) and also performed 

better on the other two measures of visual development. The authors 

concluded that the results "provide convincing evidence for a 

developmental process, in at least one higher mammal, which requires for 

its operation stimulus variation concurrent with and systematically 

dependent upon self-produced movement" (Held & Hein, 1963, p. 876). 

These results provided an impetus to the development of "feedback" toys 

for human infants, toys that would give babies varied stimulation 

dependent on their own movement. 

6.4.3 Latin Square: High Sugar Diet for Children 

Many parents and schoolteachers are convinced that children are overly 

sensitive to sugar—that sugar creates a "sugar high" that leads to 

hyperactivity and poor conduct. This idea was tested by Mark Wolraich and 

his colleagues (1994) in an elaborate study that controlled the total diets of 

48 families for a 9-week period. 

Two groups of children were recruited by advertisements and by contacting 

preschool programs: 25 children, 3 to 5 years old, and 23 children, 6 to 10 

years old, all of whom were identified by their parents as being sugar 
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sensitive. At the beginning of the study, the researchers removed all food 

from the subjects' homes and replaced it with food prepared for the study. 

                                                              Order 

 1st 2nd 3rd 

Group 1 diet 1 diet 3 diet 2 

Group 2 diet 2 diet 1 diet 3 

Group 3 diet 3 diet 2 diet 1 

Figure 10. Latin square design showing the order of three diets. 

Each subject and the subject's family followed three different diets, each for 

a 3week period: Diet 1 was high in sugar, with no artificial sweeteners; diet 

2 was low in sugar, with aspartame (the ingredient in NutraSweet) as a 

sweetener; diet 3 also was low in sugar, but with saccharin as the 

sweetener. The order of presenting the diets was balanced, using a 3 x 3 

Latin square (see Figure 10). 

Clearly, suggestion is a major threat to the internal validity of this study; if 

the families knew which diet they were on, their child's behavior might be 

influenced by their strong expectations that sugar causes behavior 

problems. To guard against this, the subjects, family members, and 

experimenters testing the children were not told which diet the subjects 

were on at any time. Also, although the actual diet changed only every 

three weeks, the appearance of the diet was changed on a weekly basis. 

Only one parent correctly guessed the order of the diets. 

The children were tested weekly on a battery of tests assessing their 

academic skills, motor skills, and general activity levels. Their parents, 

teachers, and the experimenters also rated them on behaviors such as 

conduct, hyperactivity, and aggression. 

The data were analyzed by averaging the scores on these measures during 

the periods of the three diets. The results showed virtually no differences in 

the children's behavior associated with diet. The experimenters concluded 

that "neither sucrose nor aspartame produces discernible cognitive or 

behavioral effects in normal preschool or in school-age children believed to 

be sensitive to sugar" (Wolraich et al., 1994, p. 306). We are left with the 

mystery of why so many parents are convinced that sugar is a factor in the 

misbehavior of their children. 
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6.5 POWER ANALYSIS: DECIDING ON THE NUMBER OF SUBJECTS  

6.5.1 Type I and Type II Errors 

On the basis of their results, Rush et al. concluded that cognitive therapy 

was more effective than drug therapy for the patients in their study. But 

this conclusion could be wrong. Rush et al. did their statistical test at the 5% 

level of significance. This means that there is a probability of 5% that they 

could conclude that one treatment is more effective than the other when, 

in fact, the treatments do not differ in effectiveness (that is, when the null 

hypothesis is true). This error is called a Type I error. 

A Type I error occurs when the null hypothesis is rejected when 

it is true. 

Using the 5% level of significance, 5 out of 100 experiments will reach an 

incorrect conclusion that there is an effect of the experimental treatment 

when there actually is no difference in the treatments. 

As a test of this possibility, Rush's study was replicated by Irene Elkin and 

her colleagues (1989), who found no significant difference between 

cognitive therapy and drug therapy. But this finding also may be in error. 

Elkin's group may have committed the error of not rejecting the null 

hypothesis when it is false, a Type II error. 

A Type II error occurs when the null hypothesis is not rejected 

when it is false. 

Experimenters can never know whether they have made a Type I or Type II 

error since they can never know the actual or true effects of the 

treatments. Experimenters know only the observed results, which always 

are subject to error. As we have discussed, the probability of making a Type 

I error is controlled by the statistical test. Doing the test at the 5% level of 

significance means that the probability of a Type I error is exactly 5%. The 

Type II error is controlled by the design of the study. A well-designed study 

with good measures and enough subjects will have a low probability of 

making a Type II error. This means that the probability will be high of 

detecting a difference between the treatments if such a difference exists. 
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The probability of drawing this correct conclusion is called the power of the 

statistical test. 

The power of a statistical test is the probability of correctly 

rejecting the null hypothesis. The power is equal to one minus the 

probability of a Type II error. 

The concept of power was introduced by Jersey Neyman and Egon Pearson; 

both men were colleagues of Fisher in the late 1920s. Egon Pearson was the 

son of Karl Pearson, Galton's colleague. 

A power of .50 or 50% (we will express power as a percent to avoid the 

decimal) means that the probability is 50-50 (the same as getting heads on 

the flip of a coin) that the experiment will detect a true difference between 

the treatments. A power of 90% means that the probability is 90% that an 

actual effect will be detected. Other things being equal, the experimenter 

wants the power to be as high as possible. 

Setting the number of subjects in the study is the primary method the 

experimenter has of controlling the power of an experiment: The more 

subjects, the greater the power. The power can be set as close to 100% as 

the experimenter wants by including enough subjects. But large-sized 

experiments can be expensive to conduct and time-consuming to 

administer. In addition, it may be difficult or impossible to find enough 

subjects for a large study. So experimenters must strike a balance between 

these practical concerns and power in deciding on the number of subjects. 

Successful studies with a completely randomized design are possible with a 

wide range of numbers of subjects—from just a few subjects in a group, to 

as many as 11,000 subjects per group, for example, in an experiment on the 

relationship between taking aspirin and heart attacks (Steering Committee 

of the Physicians Health Study Research Group, 1988). 

Deciding on the number of subjects is critical for experimenters. Too few 

subjects and the study can be a complete washout with no significant 

findings. When this happens an effective treatment may be overlooked. Too 

many subjects wastes time and money that could be better spent 

investigating other aspects of the problem. To make a reasonable decision 

on the number of subjects, experimenters must understand the relationship 

between the design of an experiment and power. 
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6.5.2 The Treatment Effect Size 

The power of a statistical test depends not just on the number of subjects, 

but also on the size of the treatment effect. If the effect is strong (e.g., if 

everyone getting the treatment changes dramatically and no one in the 

control group changes), an experiment with only a few subjects will lead to 

the correct conclusion that the treatment is effective. If the treatment 

effect is slight, however, many more subjects will be needed to ensure a 

good likelihood of reaching the correct conclusion. 

The fact that power depends on the actual size of the treatment effect 

presents a problem in designing studies. The experimenter planning the 

study does not know the size of the treatment effect, since, of course, the 

study is designed to find this out. So the experimenter must estimate the 

effect size and plan the study accordingly. Let's look at an example and see 

how this is done. 

Consider an experiment to study the effectiveness of a training program for 

increasing scores on the SAT verbal exam. The subjects, high school seniors, 

are randomly assigned to two groups. The treatment group receives the 

training; the control group gets no training. After the training is completed, 

the subjects in both  

 
groups take the SAT exam. In the data analysis, the experimenters plan to 

compare the mean SAT scores for the two groups using the t test at the 5% 

level of significance. They know that in a national sample the mean SAT 
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verbal score is set to 500, with a standard deviation of 100. Now, how many 

subjects should they observe in each group? 10? 20? 50? 100? 

Let's consider three possibilities for the size of the training effect. 

1. A small sized effect: Let's say SAT scores in the treatment group 

average only 20 points higher than scores in the control group. 

Since the standard deviation of the SAT is 100 points, this 

would be an increase of only 20/100 = 0.20 of a standard 

deviation. An average student, at the 50th percentile without 

training, would be at the 58th percentile with training. (The 

58th percentile is 0.20 standard deviations above the mean on 

a normal curve.) 

Dividing the mean difference by the standard deviation, as we just did to 

get 20/100 = 0.20, gives a good measure of the size of a treatment effect. 

This statistic is commonly used in the analysis of power and is called the 

standardized mean difference (or Cohen's measure of effect size), d. 

2. A medium-sized effect: Scores are raised by 50 points; d = 

50/100 = 0.50. The average student before training would be at 

the 69th percentile after training. 

3. A large-sized effect: Scores are raised by 80 points; d = 80/100 

= 0.80.  

The average student before training would be at the 79th percentile 

after training. 

Let's first consider the small effect (d = 0.20). The graph in Figure 11 shows 

the relationship between power (in %) and the number of subjects per 

group, n, for different sized treatment effects. 

Find the curve for d = 0.20. Next, find the point on the curve where it 

intersects the 50% power value and read that the corresponding number of 

subjects is about 190. This means that 190 subjects per group, a total of 380 

subjects for the study, are needed to have a 50% chance of detecting this 

small effect. It probably would not be worthwhile to do the study with a 

power this low, since half the time you would not expect significant results. 

Jacob Cohen (1988), who has been advocating power analysis to 

psychologists planning research, suggests doing studies with a power of at 

least 80%. With a small effect size of d = 0.20, this would take about 400 
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subjects per group. Unless you have access to lots of subjects, doing a study 

to detect a small effect might be a waste of effort. 

With a medium-sized effect (d = 0.50), many fewer subjects would be 

needed. The graph shows that for a power of 80%, it would take about 65 

subjects per group, and for a power of 90%, about 85 subjects per group. 

For a strong effect, d = 0.80, 25 subjects per group would yield a power of 

80%; 35 subjects would give about 90% power. 

So what is the bottom line on how many subjects to use? With a medium-

sized effect, plan on around 65-85 subjects per group to have a high-

powered study. If the size of the effect is large, the study could use as few 

as 25 subjects per group and still have high power. On the other hand, if 

you expect a small treatment effect, plan on a large number of subjects 

(800+). If this is not feasible, consider going back to the drawing board and 

improving the treatment, or try one of the strategies discussed below to 

increase power. 

6.5.3 How to Estimate the Effect Size in Your Own Research 

Estimating the effect size is straightforward if you are doing research on a 

problem that has been studied before. For example, there is extensive 

literature on the effectiveness of different treatments for depression, from 

psychotherapies to electro-convulsive therapies. If you were interested in 

doing research on depression, you could get a good idea of what effect sizes 

to expect in your own research by studying the available literature. Virtually 

all studies publish means and standard deviations on the outcome 

measures for each treatment group, so calculating the effect size (d = 

MD/SD) is simple. 

If you can find no previous research on your problem, then the power 

analysis is difficult because you have no basis for estimating the effect size. 

In such cases, one approach would be to do a pilot study: 

A pilot study is a small-scale rehearsal of the actual study to test 

procedures and practice interacting with the subjects. 

The results from a pilot study will give you a rough idea of the standard 

deviation of your measure and the differences to expect between groups. 

Without a pilot study, your best bet would be to make an educated guess 

about the effect size, or simply plan for a medium-sized effect and include 
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40 to 50 subjects per group. This would give you high power for a strong 

effect, good power for a medium effect, and poor power for a weak effect. 

6.5.4 Other Strategies to Increase Power 

If the power analysis suggests observing more subjects than is practical, you 

can consider alternative methods to create a high-powered study with 

fewer subjects. These methods involve increasing the size of the treatment 

effect or changing the alpha level of the statistical test that you plan to use. 

We will consider effect size first. Effect size, as you recall, is defined as the 

mean difference between the treatments, divided by the standard deviation 

of the scores: d = MD/SD. Effect size can be increased either by increasing 

MD or by decreasing SD. 

Increasing power by increasing MD. Let's reconsider the study on 

the effect of training on the SAT. Imagine the training program is a 2-hour 

seminar covering strategies for answering multiple-choice questions and 

working examples of the types of questions that can be expected on the 

test. Compare this to a training program involving 1 hour a day for a full 

year, in which the content of the test is studied extensively. This yearlong 

program should be more effective than the 2-hour session. Consequently, 

the effect size for the yearlong program should be larger and the power to 

detect the more effective program greater. 

The lesson here is that by selecting a treatment with a high likelihood of 

being effective and comparing it to a treatment expected to be ineffective, 

for example, a control group, you can expect a larger effect, which will 

require fewer subjects to achieve adequate power. 

To increase power, plan your study to compare treatments with 

markedly different effects. 

Increasing power by reducing the standard deviation. The 

SAT training example, discussed above, used an unselected group of high 

school seniors expected to have a SD of 100 on the SAT verbal exam. By 

systematically selecting subjects, it is possible to reduce this SD and thereby 

increase the effect size and the power. Since SAT scores are correlated with 

grades, subjects could be selected who have average grades; say, a C 

average. For this select group, the variability of SAT scores should be lower 

than 100, since there would be fewer high scores and fewer low scores. 
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Doing the study with these students would increase power through 

reducing SD. 

The more homogeneous the subjects in a study, the smaller will 

be the SD and the greater the power to detect a difference 

between treatments. 

There is a disadvantage to improving power by systematically selecting 

subjects, though. By restricting the subjects, you reduce your ability to 

generalize the results. In the new version of the SAT study, for example, you 

would find out nothing about how the training would affect students with 

averages above or below C. 

The standard deviation also can be reduced by using a more 

reliable measure for the dependent variable, if one is available, 

and by tightening the controls in the study. 

If you are using a "home-made" measure or rating scale, you might look 

instead for a published measure with established validity and reliability. 

Controls could be improved in any number of ways depending on the 

specifics of the study. It might be possible to increase control by reducing 

distracting or extraneous events during the experiment or by using uniform 

procedures, for example, conducting the study in a quiet room, free of 

interruptions, and tape recording the instructions so that they are the same 

for all participants. 

Increasing power by increasing the alpha level or using one-

tailed tests. It is traditional to set alpha equal to .05, guaranteeing a 5% 

probability of a Type I error. If alpha is set at a higher value, say, .10, the 

power of the test will be increased. At first glance, this seems appealing; 

however, it usually is not a good idea because this change also increases the 

probability of making a Type I error to 10%. 

Researchers customarily test the null hypothesis against the alternative 

hypothesis that the experimental conditions have different effects 

(direction unspecified); the researcher rejects the null hypothesis if the 

mean of one condition, say, Al, is sufficiently greater than the mean of the 

other condition, A2, or if the mean of Al is sufficiently lower than the mean 

of A2. Here the statistical test is called two-tailed because the researcher 
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rejects the null hypothesis if either of these outcomes occurs. The power 

chart in Figure 10 is based on a two-tailed test with alpha equal to .05. 

However, a researcher might decide instead to test the more specific 

hypothesis that one of the conditions, say, Al, has a greater mean than the 

other, A2. Here the null hypothesis would be rejected only for one 

outcome, when the mean of Al is sufficiently greater than the mean of A2, 

a one-tailed test. One-tailed tests, which are more powerful than two-

tailed tests, are appropriate, for example, when comparing new treatments 

with placebo treatments or when testing a prediction deduced from a 

theory. 

6.6 STATISTICAL CONCLUSION VALIDITY 
Virtually every modern experiment that employs random assignment of 

subjects to conditions also uses statistical tests. Even though the results of 

statistical tests give the most accurate conclusions possible, these results 

may be in error. Cook and Campbell (1979) discuss the accuracy of 

conclusions based on statistical tests as statistical conclusion validity: 

Statistical conclusion validity refers to the validity of the 

conclusion of a statistical test. 

As you know, statistical tests are subject to two types of error, Types I and 

II. Cook and Campbell's analysis focuses on the circumstances leading to 

these errors. Here, we will consider four major threats to valid inference 

they discuss: low statistical power, violated assumptions of statistical tests, 

the error rate problem, and experimental instability. 

6.6.1 Low Statistical Power 

If the power of a statistical test is low, there is a high risk of overlooking the 

effect of an independent variable. After studying experimental designs in 

psychology, Cohen (1988) concluded that too many research studies are 

done with low power. In the previous section, we discussed the steps that 

researchers can take to increase the power of their studies. 

6.6.2 Violation of Assumptions 

In order to calculate the p value associated with a statistical test, 

assumptions must be made about the nature of the observations. The t 

test, for example, assumes that the observations are samples from a large 
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set of scores and that the observations in this large set have a normal 

probability distribution. If this assumption is incorrect, the p value may be 

inaccurate and the conclusion based on p invalid. The impact of the 

violation of assumptions is a technical problem that is studied in statistics. 

To avoid such problems, researchers should be familiar with the 

assumptions of the tests they use and be confident that any violations of 

these assumptions, if present, will not affect their conclusions. 

6.6.3 Error Rate Problem 

As we have discussed, the Type I error rate of statistical tests is controlled 

by the experimenter. It is customarily set at 5%, meaning that in 5 out of 

100 experiments when the null hypothesis is true, the experimenter will 

incorrectly reject this hypothesis. This is the case if the experimenter 

conducts only one test; when multiple tests are done, the error rate 

increases. If an experimenter conducts, say, 100 tests, the probability of 

making at least one Type I error can be as high as .99. If you do enough 

tests, you are virtually certain to make a Type I error, that is, falsely claiming 

statistical significance. 

The increased error rates associated with multiple tests can make the 

results of research difficult to interpret. For example, a large-scale study 

done in Sweden reported a statistically significant risk of disease associated 

with living close to power lines (Feychting & Ahlbom, 1993). However, this 

conclusion now is in doubt because the researchers conducted hundreds of 

statistical tests but published only selected results. Although the error rate 

problem with multiple tests has been recognized for over 30 years (see 

Ryan, 1959), there still is no satisfactory solution. 

6.6.4 Instability 

Instability is the threat that circumstances in the experimental situation, 

other than those associated with the independent variable, may affect 

subjects' scores on the dependent variable. Such circumstances would 

include unreliable measures, unwanted variation in treatments, unexpected 

events during the experiment (e.g., equipment malfunction), and 

differences among the subjects in characteristics that influence their 

behavior in the study. All these factors can increase the variability of 

subjects' scores on the dependent variable, consequently reducing the 

power of the study and its statistical conclusion validity. The threat of 
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instability can be reduced by using reliable measures and uniform 

treatments, and by selecting more homogeneous subjects. 

6.7 A COMMENT 
With this discussion of power and statistical conclusion validity, we 

complete our presentation of the basic technical aspects of psychological 

research. We have seen how Mill's methods are applied and how statistical 

controls and randomization are used in overcoming the problems of 

uncontrolled variables. We also presented the basic designs used in 

experimental and correlational research. These technical issues, however, 

do not give a complete picture of the concerns involved in conducting 

research. We have yet to discuss the ethics of research, the moral rights 

and wrongs that must be considered in studying animals and people. 

The ethical codes that we use in psychological research developed in a 

different manner from advances in technical methods. Methodological 

advances typically have come from single scientists trying to solve problems 

in their own research. Correlation was invented by Galton to study heredity; 

Fisher developed randomization to improve agricultural research. As we 

discuss in the next chapter, ethical codes and procedures came from 

committees reacting to the abuse of subjects by researchers. These 

committees worked to define the basic rights of subjects in research and to 

develop effective procedures to help researchers safeguard them. 

 

6.8 KEY TERMS 
 

Measure of error 

Randomized blocks design 

Replication in the randomized blocks design 

Random versus systematic assignment 

Null Hypothesis 

Significance probability 
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Alpha level 

Statistical significance 

Level of significance 

Randomization test 

 t test 

Completely randomized design 

Latin square design 

Yoked control designs 

Type I and Type II errors 

Power 

Standardized mean difference, d 

Pilot  
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6.10 REVIEW QUESTIONS 
 

1. Why did Fisher think that past records of wheat growth on plots A1 and 

A2 would help him to interpret the results of his experiment on the effect of 

fertilizer? 

2. How did Fisher use these past records to determine a measure of error? 

3. Describe how treatments are randomly assigned to plots in the 

randomized blocks design. 

4. What are two advantages of random assignment over systematic 

assignment? 

5. State the rule for reaching a conclusion about the null hypothesis based 

on the value of p. 

6. Explain why rejecting the null hypothesis does not mean that the results 

of a study prove that the null hypothesis is false. 

7. Describe how treatments are assigned to plots in a Latin square design. 

8. Describe how participants can be grouped into blocks in a psychological 

experiment using a randomized blocks design. 

9. Describe a common application of the Latin square design in psychology. 

10. Explain how the yoked control design used by Held and Hein controlled 

for the visual stimulation the kittens received. 

11. How is the probability of a Type I error controlled? 

12. What factors in research affect the probability of a Type II error? 

13. Use the power chart to determine the power of an experiment with d = 

0.50 and 50 subjects in each group. 

14. Present four strategies for increasing the power of an experiment. 

15. Identify four major threats to drawing valid conclusions with a statistical 

test. 

 


