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5 CORRELATION 

It will be shown how the closeness of co-relation in any 

particular case admits of being expressed by a single number.  

Sir Francis Galton 

Today norm-based measurement is the dominant method in psychology for 

assessing individual differences. In fact, all of our most popular scales (e.g., the 

Wechsler intelligence tests, the Minnesota Multiphasic Personality Inventory, 

and the Strong Interest Inventory) use this type of measurement. But the 

success of this approach depended on additional methodological advances that 

enabled researchers to evaluate the scales and use them in empirical studies. 

First, methods were needed for evaluating how well the scales measured what 

they were designed to measure—whether the Wechsler Intelligence Scale for 

Children (WISC) is a good measure of intelligence, for example. Second, 

investigators needed a method for studying individual differences. Variation 

between people in personality, social class, education, sex, political beliefs, and 

culture cannot be studied experimentally, because it is impossible to 

manipulate such characteristics. These needs were met with the development 

of a statistical method called "correlational analysis." 

This highly mathematical technique was not devised, as you might expect, by a 

mathematician concerned with the abstract problem of describing the 

relationship between variables. The initial work on this method was done by Sir 

Francis Galton, the inventor of norm-based measurement. Galton, who was 

studying inheritance by breeding peas, was looking for a method to assess how 

similar parents and offspring are on different traits. The story of his research 

and of his subsequent invention of the correlation coefficient reveals the close 

association between correlation and norm-based measurement. Perhaps more 

than any other single event, the introduction of correlational analysis brought 

quantitative methods to the social sciences. With correlation, psychology for 

the first time had a powerful, objective method for observational research. 
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5.1 THE DISCOVERY OF REGRESSION 

In his initial studies of heredity, Galton compared different generations of 

people on distributions of physical traits. The comparisons showed that the 

distributions were surprisingly constant across generations. There was little 

change in either the means or standard deviations of the scores. Further, fossil 

records of plants revealed constant distributions of characteristics over 

thousands of years. 

This consistency was puzzling to Galton. He thought that if the physical traits 

he was observing were highly determined by heredity, they would not be 

constant over generations. If heredity is highly influential, he thought, there 

would be an increasing standard deviation in traits from generation to 

generation. 

Let's look at Galton's reasoning using height in people as an example. Galton 

thought that height is determined mostly by heredity; so the children of tall 

parents should end up as tall adults, and the children of short parents should 

be short adults. But Galton knew that height is not completely determined by 

heredity; all children in the same family are not the same height even though 

they have the same parents. 

Most likely, Galton supposed, about half the children in a family grow taller 

than their parents, and half end up shorter. But if this is true, there should be 

ever increasing standard deviations of the trait in the population. To 

understand why, consider, as Galton did, two tall people who have children; 

say, half their children are taller than they are as adults. The tall children marry 

other tall people and have children, half of whom grow taller than themselves. 

If this is repeated, generation after generation, we would end up with some 

very tall people, say, people 30 feet tall, having even taller children! The same 

process would occur for short parents; half of their children would end up 

shorter than them. As adults, the short people would have some shorter kids, 

and so on— until we would have some people, say, 1-foot-tall, having even 

shorter kids! The increasing numbers of very short and very tall people would 

dramatically increase the variability of height in the population. 

But people have been on earth for thousands of generations and there are no 

gigantic or teeny-tiny people. Perhaps, thought Galton, children are not equally 
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likely to be taller or shorter than their parents. He wrote to his cousin Charles 

Darwin that he "was very desirous of ascertaining the facts of the case." In 

response, Darwin suggested that he investigate the question using sweet peas. 

Galton then designed an experiment to determine the exact relationship 

between the sizes of parent peas and their offspring. Peas had the advantage 

over other plants of being self-fertilizing, so each offspring had only one 

parent. 

Galton decided to study quantitative characteristics of peas (of course)— 

diameter and weight. (At about the same time as Galton's experiments, Gregor 

Mendel studied qualitative traits of peas, such as tall versus dwarf plants, by 

interbreeding plants and arrived at an entirely different theory of heredity 

from Galton's.) Galton selected seeds of seven different, evenly spaced sizes: 

three below average, one average, and three above average. (He was using 

Mill's method of concomitant variation here, but he would reach an entirely 

different type of conclusion than the method would reach.) He picked 10 seeds 

of each size, for a total of 70 seeds, to form a set. Nine sets were sent to 

friends in the country with explicit instructions on how to plant them. At 

harvest time, the plants were sent back to Galton. 

5.2 THE CONCEPT OF REGRESSION 

After measuring the sizes of the offspring, Galton classified them into the 

seven groups defined by the size of their parents. Table 1 shows the average 

size of the offspring with the sizes of their parents for all seven parent sizes. 

(The results are simplified here to clarify the relationship between parent and 

offspring.) 

Put yourself in Galton's shoes and see if you can see a relationship between 

the parent sizes and the average offspring sizes. Can you state the relationship 

with a simple principle? Hint: Forget about the absolute size of the peas and 

think in terms of size measured as a deviation from the mean; the average pea 

had a diameter of 18. Table 1 shows these deviations in parentheses. Can you 

state the relationship now? 
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TABLE 1 PARENTS VERSUS AVERAGE OFFSPRING, SIZE IN HUNDREDS  

OF AN INCH (DEVIATION FROM THE MEAN OF 18 IN PARENTHESES) 

 

 Parent Size Offspring Average Size 

Biggest 21 (+3) 19 (+1) 

 20 (+2) 182/3 (+2/3) 

 19 (+1) 18 1/3 (+1/3) 

Average 18 (0) 18 (0) 

 17 (-1) 17% {-1/3) 

 16 (-2) 17% {-2/3) 

Smallest 15 (-3) 17 (-1) 

Galton described the relationship as one of "regression to 

mediocrity" or "regression to the mean."  

The average offspring was closer to the average-sized pea than its parent was. 

Big parents had smaller offspring; tiny parents had bigger offspring. Only 

average-sized parents had offspring who were the same size, on the average, 

as their parents. 

5.3 THE REGRESSION COEFFICIENT 

Galton found that a single number, a fraction, described the regression to the 

mean. For each of the seven groups of peas, the average offspring deviation 

from the mean was 1/3 the deviation of its parent. Table 1 shows that if you 

divide the parent deviation from the mean by 3, in each case you get the 

average offspring deviation. Galton called this number the regression 

coefficient, and gave it the symbol r, for regression. 

This simple result could only be discovered using norm-based measurements 

on the peas. The regression coefficient relates the deviation of the parent from 

the mean to the deviation of the offspring from the mean. 
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This result was astounding. Could it really be true that a single number is 

sufficient to describe the relationship between relatives? Galton wrote: 

This curious result was based on so many plantings . . . that I 

could entertain no doubt of the truth of my conclusions. 

(Galton, 1886, p. 246) 

But people were another story. There were no good data available that could 

be used to test regression to the mean for people. 

Galton immediately began to collect family records of height for two 

generations. After five years, he had collected about 300 cases of parents' and 

their children's heights as adults, enough, he judged, for a fair test of 

regression. 

The results confirmed his understanding that the distribution of height changes 

little from generation to generation. The mean and standard deviation for 

fathers and sons were virtually identical; the same result was found for 

mothers and daughters. Now for the critical point. Was there regression to the 

mean? 

5.4 THE SCATTERPLOT: THE GRAPH OF CORRELATION 

The test for regression followed the same design as the pea study, with one 

exception: People have two parents, not one; and the offspring are of two 

types—men and women, each with a different distribution of height; men are 

taller, on the average, than women.  

To solve this problem, Galton multiplied the heights of all the women in the 

study by 1.08, a factor chosen to equalize the average heights of men and 

women. Then he averaged the parents' heights to obtain a single number 

called the mid-parent value. 

Before describing what Galton found, let's look at the range of logical 

possibilities for the regression. We can better appreciate his specific result if 

we first see the full range of possibilities. 

Let's start with the degree of regression Galton found for peas, r = 1/3 or .33. 

For this value of r, the children's deviation from the mean would be 1/3 of their 
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parents' deviation from the mean. Figure 1 shows this regression for height. 

The graph shows the heights expected for the average child, if r = .33. The 

straight line in the graph is called the regression line. Using this line, you can 

determine the average height of the children for any height mid-parent 

(assuming here that r = .33). For example, mid-parents who are 71 inches tall 

can expect children who average 69 inches. This case is shown on the graph. 

The regression line shows only the results for the average child. It doesn't 

show the variability in height among the children in the same family (or among 

children with the same sized parents). This variability can be seen if we plot the 

individual parent/child cases on the graph with the regression line, as in Figure 

2. Sixty cases are plotted there, less than Galton used, but enough to clearly 

show the results. Each diamond in the graph, 0, is one case and is located by 

the height of the mid-parent (on the horizontal axis) and the height of their 

child (on the vertical axis). This type of graph, which is known by a variety of  
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different names—scattergram, dot diagram, X-Y chart, or scatterplot—

is still the best technique we have for displaying the relationship 

between two measures. 

A scatterplot is a graph showing, for a group of subjects, the 

values for each subject on two measures. Each subject is 

plotted as a point; the point is located by the values of the 

subject on the two measures. The measures are plotted on 

the horizontal and vertical axes of the graph. 

The scatterplot for r = .33 shows considerable variability, or scatter, 

around the regression line. Pick a mid-parent height and look at the 

wide range of heights of the children. With r = .33, there is only weak 

similarity in the heights of parents and children. 

Figure 3 shows the regression line and individual cases for r = .66. 

There is more similarity between parent and child here than for r = 

.33. The plot shows that very tall parents do not have very short 

children, and vice versa; very short parents do not have very tall kids. 

There also is less scatter around the regression line than for r - .33. 

Children in the same family would not vary widely in height if r = .66. 

The next plot (Figure 4) shows how parent and child heights would be 

related if r = .90. The children would be very similar in height to their 

parents here; the child deviation from the mean is 9/10 of the parents' 

deviation, so there is only a small regression to the mean. There also is 

little scatter around the regression line. 

The maximum value for r is 1 (Figure 5). (If r were greater than 1, the 

children would be farther from the mean than their parents; 

consequently, the standard deviation of height also would increase 

from generation to generation. But since the standard deviation is 

equal for the parents and children, r cannot be greater than 1.) With r 

= 1, every case falls on the regression line, so 
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all children are identical in height to their mid-parent. Galton was 

positive he would not find r = 1, since he knew that all sons (or 

daughters) of the same parents are not the same height. 

There is one more possibility to examine, which Galton also thought 

would not happen, r = 0 (Figure 6). The regression line is horizontal at 

the mean in this case; with r = 0, the heights of the children are not 

related to the heights of the parents. Tall parents are just as likely to 

have short, average, or tall children; the same expectations hold for 

the children of tall parents as for those of short parents. There is 

simply no similarity in height between parent and child. Galton was 

fairly sure he would not find r = 0, because casual observation 

indicated some degree of similarity between parent and child. Now, 

the actual result. Galton found the regression coefficient was r = .66. 
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On the average, children have 2/3 of their mid-parent deviation. The 

plot, Figure 3, shows a marked similarity between parent and child. 

This result was better than Galton could have hoped for. First, his 

paradox was explained. Regression to the mean of r = .66 allows the 

parent and child to be quite similar in height and still have constancy 

in the mean and standard deviation across generations. Second, the 

usefulness of the regression coefficient was confirmed for people. The 

index was clearly a measure of similarity between relatives; r - 1 

indicated perfect similarity; r = 0 indicated no similarity; values 

between 0 and 1 could be interpreted as degrees of similarity. The 

higher the value of r, the less the regression to the mean and the 

greater the similarity between relatives. Since Galton considered the 

effects of the environment negligible, for him r was an index of 

biological inheritance. 

These results suggested a lifetime of research. Galton and his 

followers could find the degree of inheritance for all major human 

faculties and characteristics, for all possible pairings of relatives—child 

versus parent, grandparent versus grandchild, uncle versus nephews, 

etc. The research would be time-consuming (and pretty dull), but the 

results would form the empirical foundation for eugenics. 

Galton did not realize the full importance of his regression analysis 

yet. He thought its use was limited to studies of inheritance—studies 

examining the relationship between relatives on the same trait. It was 

only several years later, while he was working on a project unrelated 

to inheritance, that the real significance of his method suddenly struck 

him. It was a moment of joy for Galton. 

5.5 THE CORRELATION COEFFICIENT 

5.5.1 The Independence of Variables 

Galton became interested in the problem of personal identity when 

he was invited to give a lecture on the system of criminal 

identification developed by Alphonse Bertillon. "Bertillonage" was the 

only systematic method of establishing personal identity at the time. 

The method involved careful measurement of different characteristics 

of the body, such as height, foot length, and head size. Criminologists 

believed that this set of measurements was sufficient to accurately 

establish a person's unique identity and guard against false 
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impersonation. (Fingerprinting, the modern system for establishing 

identity, was developed by Galton as an alternative to Bertillon's 

system.) 

Fingerprints were a sidelight of Galton's main work on heredity, but a 

sidelight that gave the occasion for Galton's most fruitful insight—the 

invention of correlation analysis. This insight occurred while Galton 

was considering a criticism of Bertillonage. 

 

According to Galton, the claimed high accuracy of Bertillonage was 

based on the presumed "independence of the variables measured." 

Two variables are said to be independent of each other if the 

variation in scores on one variable is in no way related to the 

variation in scores on the other variable. 

Galton thought that the accuracy of the method was not as high as 

claimed because the variables used by Bertillon were not independent 

of each other. He thought, for example, that tall people would most 

likely have big feet and that short people would have small feet. If this 

were true, the two measures would not be independent, and 

including foot size in the system would add little information over 

knowing a person's height. But how could Galton demonstrate this 

lack of independence? 
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5.5.2 z Scores 

The problem of comparing variables was related to the heredity 

problem that Galton had been working on already. Galton had 

demonstrated that the regression coefficient, r, is basically a measure 

of similarity; r could index the degree of similarity between the 

heights of fathers and sons, for example. But could r be computed 

between different measures taken on the same person? Does it make 

sense to ask what is the similarity between, say, head length and 

height? One measure varies around a mean of 67 inches, while the 

other varies around a mean of 7.5 inches. How can you say a person's 

height is identical, or slightly different, or very different from his head 

size? 

This was the question Galton was thinking about while visiting the 

grounds of Naworth Castle when, in his words: 

A temporary shower drove me to seek refuge in a 

reddish recess in the rock by the side of the pathway. 

There the idea flashed across me, and I forgot 

everything else for a moment in my great delight. 

(Galton, 1909, p. 300) 

He had figured out how to compare different measures and determine 

an index of correlation. 

The solution was based on an extension of Galton's norm-based 

measurement scheme of describing a person's score as a deviation 

from the mean. For example, let's say that Big Joe is 72 inches tall and 

the average man's height is 67 inches. Then Joe is 5 inches above the 

mean. If the standard deviation of height is 2.5 inches, then Joe is 

5/2.5, or 2, standard deviations above the mean. Next consider Big 

Joe's head. Let's say it is 8.1 inches long, and the mean head length is 

7.5 inches, and the standard deviation of this measure is 0.3 inches. 

Joe's head length is .6 inches above average; this is 2 standard 

deviations above average, since the standard deviation is 0.3 (.6/.3 = 

2). Now we can compare Joe's height with his head size: Both are 2 

standard deviations above average, so Joe's height is identical with his 

head size! In this special sense, Joe is as tall as his head is long!  This 

comparison of a person's scores on two different measures is made by 

transforming the scores to a new scale, a scale where the unit of 
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measure is based on the standard deviation of the measure. Today 

these new scores are called z scores: 

A z score is equal to the difference between a score and the 

mean divided by the standard deviation. A z score expresses 

how far a score is from the mean in units of the standard 

deviation. 

The formula for computing a z score from an original or raw score is 

X - M 

z =  
SD 

where, X is the original score, M is the mean of the X scores, and SD is 

the standard deviation of the X scores. 

A z score of zero occurs when the X score is equal to the mean; 

positive z scores occur when X scores are above the mean, and 

negative z scores when the X scores are below the mean. If a person, 

like Big Joe, has the same z score on two different measures, then he 

falls at the same percentile on both measures. Two standard 

deviations above the mean is at the 98th percentile; so Joe is taller 

than all but 2% of people, and his head also is longer than all but 2% of 

other heads. 

5.5.3 r, an Index of Correlation 

With the z score, Galton could determine the similarity of head size 

and height. Transforming the original scores to z scores puts both 

measures on the same scale so that the scores can be directly 

compared. The value of r can then be computed on these scores just 

as if it were a problem in heredity. (The computation of r will be 

discussed in the next section.) If r turned out to be equal to zero, the 

variables would be independent. Positive values of r would indicate 

similarity between the z scores on the two measures, that is, a lack of 

independence. Galton found for head size versus height r = +.35, 

indicating lack of independence. This finding confirmed his criticism of 

Bertillonage. 
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Galton called r an index of co-relation or correlation (the second 

spelling caught on). In his own words: 

Two variable organs are said to be co-related when 

the variation of the one is accompanied on the 

average by more or less variation of the other, and in 

the same direction. Thus the length of the arm is said 

to be co-related with that of the leg, because a person 

with a long arm has usually a long leg, and conversely. 

If the co-relation be close then a person with a very 

long arm would usually have a very long leg; if it be 

moderately close then the length of his leg would only 

be long, not very long; and if there were no co-relation 

at all then the length of his leg would on the average 

be mediocre. . . .Between these two extremes are an 

endless number of intermediate cases, and it will be 

shown how the closeness of co-relation in any 

particular case admits of being expressed by a simple 

number. (Galton, in Pearson, 1930, p. 50) 

This passage, the first public presentation of correlation, was read at a 

meeting of the British Royal Society on December 20, 1888. This was 

the start of a revolution in research methods. 

5.5.4 Calculating r 

Galton computed r by a graphical method. Today the easiest, most 

accurate computation is by computer. The computer is programmed 

to follow the computational formula developed by Karl Pearson, the 

inventor of the chi-square test we discussed in the last chapter. 

Pearson developed and extended the mathematical basis of 

correlation and derived the modern formula for r. Because of this 

work, r is now known as the Pearson correlation coefficient. In a 

strange twist of history, Galton's name is no longer linked with 

correlation, and many scientists now must think it was developed by 

Pearson! 

5.5.5 r and the Reliability and Validity of Measures 

The correlation coefficient provides an important tool for evaluating 

the reliability and validity of norm-based scales. A good example of 

the application of this statistic is found in the manual for the latest 
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revision of the Wechsler Intelligence Scale for Children (WISC-III, 

Wechsler, 1991). 

The reliability of the WISC was reported for children in age groups 

from 6 to 16 years old. For each age group, 200 children were tested. 

Reliability was studied using the split-half method: The test, composed 

of numerous items with differing content, was split in half to form, in 

effect, two IQ tests with similar content. Each subject was scored on 

both halves of the test and these scores were correlated. A high 

correlation would indicate that scores on the two halves of the scale 

are consistent with each other. If the correlation is close to zero, the 

implication would be that the test is inconsistent and does not even 

correlate with itself. The split-half correlation was high for the WISC. 

For example, for 11-year-olds, the correlation was .90. This high value 

places the test among the most reliable psychological tests available. 

The validity of the WISC was studied by correlating WISC scores with 

other established measures of intelligence and determining the 

correlations of WISC scores with other variables that should correlate 

with intelligence for theoretical reasons. If the WISC is valid, the 

correlation of the WISC and other intelligence tests should be high, 

close to the reliability of the WISC. The correlation between WISC 

scores and school grades was expected to be positive but lower than 

the correlation with other intelligence tests because grades depend 

on more than intelligence. 

The WISC manual reports that the WISC correlates with the Stanford-

Binet Intelligence test, r = .83, and with mathematics and English 

grades in school, r = .41 and r = .40, respectively. These correlations 

support the validity of the WISC. We will discuss the reliability and 

validity of measures further in Chapter 12, Planning the Study. 

5.6 CORRELATION AND PREDICTION: THE METHOD OF LEAST 

SQUARES 

As we have discussed, Galton saw the correlation coefficient as an 

index of similarity—a measure of the degree of co-relation between 

different variables. His interpretation still is in common use today, for 

example, whenever we compute the correlation between two 
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measures to determine the degree of similarity between them. But 

there also is a different interpretation of correlation today. This 

interpretation was discovered by George Yule (1897). Yule, a 

mathematician working in Pearson's laboratory saw that Galton's and 

Pearson's work on correlation was a specific case of a general method 

of analysis that astronomers and physicists had been using for almost 

a century— the method of least squares. 

Scientists had used this method to develop mathematical models to 

predict events such as the movement of the moon and planets and 

the occurrence of high and low tides. The method involved calculating 

equations to minimize the error in predicting one variable, the 

dependent variable, from a set of independent variables. Astronomers 

would take a set of observations of the position of the moon at 

different times during the year and with the method of least squares 

calculate an equation to predict the moon's position in the future. The 

method calculated the equation so it would be the best possible fit to 

the observations. The method got the name least squares because it 

guaranteed that the fit had the least squared error. The error is the 

difference between the value predicted by the equation and the 

observed value. 

Yule thought that Galton's problem of describing the relationship 

between 7 parents and offspring also could be considered as a 

problem in prediction: How well can you predict offspring 

characteristics from parent characteristics? 

When Yule worked out the least squares solution to this problem, the 

result was astonishing. The equation for prediction calculated by the 

method of least squares was the exact equation for Galton's 

regression line. Yule's calculations also showed that the correlation 

coefficient, r, was a measure of the accuracy of the predictions: r = 1. 

was characteristic of perfect prediction (zero error) and r = 0 was the 

worst possible prediction (maximum error). 

The equation from the method of least squares for predicting height 

(based on Galton's data) was 

Y = 26.8 + .6(X), 
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where Y was the predicted height of the offspring and X was the 

height of the parent. This is the equation for a straight line, a linear 

relationship between the variables Y and X. 

Two variables, Y and X, are said to have a linear relationship 

if they are related by an equation of the type 

 Y = a + bX. 

 

The constant b is the slope of the line and the constant a is the Y 

intercept of the line. The slope of the line is equal to the change in Y 

for a change in X; the Y intercept is the value of Y for X = 0, the point 

where the line crosses the Y axis. Figure 7 shows the slope and Y 

intercept for the equation Y - 2 + 0.5X. 

Yule's work demonstrated that what Galton was doing when he 

calculated a correlation coefficient was predicting one variable from 

another variable assuming a linear relationship. If you examine the 

scatterplots shown earlier in this chapter, you will see that the higher 

the value of r, the closer the data points fall to the regression line. 

The Pearson correlation coefficient, r, is a measure of how 

well one variable, Y, can be predicted from another variable, 

X, using the linear relationship Y = a + bX. A value of r = 1 

indicates perfect, error-free prediction. A value of r = 0 

indicates prediction at a chance level. 
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Yule's insight linked Galton and Pearson's work to an established area 

of mathematics and led to the development of two methods of 

enormous importance in the social sciences: (1) methods for studying 

nonlinear relationships, and (2) a new method of statistical control. 

5.6.1 Nonlinear Relationships 

The method of least squares is not limited to linear relationships. With 

a  

 
simple change of the model, nonlinear relationships can be studied. 

Let's consider the relationship between anxiety and test performance 

in school. Optimal performance is expected at a middle level of 

anxiety—anxiety that is neither too high to hinder performance nor 

too low to motivate the student to do well. This curvilinear 

relationship is shown in Figure 8. The curve follows the equation Y = a 

+ bX + cX2, where a, b, and c are constants calculated to minimize 

errors in prediction. This equation differs from the equation for the 

straight line by the addition of the term cX2. 

With the method of least squares, experimenters can determine the 

extent to which observed scores match what is expected for a 

curvilinear relationship. The degree of fit of this model is measured by 

a generalization of the correlation coefficient that is called the 

multiple correlation coefficient. 

This development was important for psychology because nonlinear 

relationships are common in psychological research. Growth curves, 

which show how physical and psychological characteristics change 
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over time, are typically nonlinear. Psychophysical relationships, which 

show how sensory acuity changes as a function of the magnitude of a 

physical stimulus, also are nonlinear. 

5.6.2 Statistical Control 

In Mill's methods, variables are controlled by holding them constant 

over different conditions in an experiment. But such control is not 

always possible. In studies of diseases, like cancer, or disorders, like 

depression or schizophrenia, experiments to find the causes are 

impossible. Such research must be correlational. The method of least 

squares provides a powerful tool for analysis in such cases. 

Let's take breast cancer as an example. A recent theory holds that 

exposure to sunshine reduces the risk of a woman developing breast 

cancer (Cowley, 1992). According to the theory, the vitamin D 

produced by sunshine helps the body absorb calcium which, in turn, 

controls the growth of cancerous cells. But how can this suspected 

relationship be studied? One way would be to compare rates of breast 

cancer in groups of women who get different amounts of sunshine, 

say, women in Seattle versus women in Florida. But how can we 

control other variables that we already know are linked with cancer? 

For example, we know that the risk of cancer increases directly with 

age, so age must be accounted for in studies of cancer. 

Age can be "controlled" in such studies by using the method of least 

squares in a two-stage process. In the first stage, age is measured, 

then used in a mathematical model to predict the incidence of cancer: 

Model 1: Y = a + b (Age) 

where Y is the incidence of cancer, the dependent variable, and Age is 

the independent variable. 

We can fit this model to the data to determine how well cancer is 

predicted by age. In the second stage, we fit the model: 

Model 2:Y = a + b(Age) + c(Sunshine) 

and calculate how much better Model 2 fits the data compared to 

Model 1. If Model 2 fits the results significantly better, this constitutes 

evidence that the amount of sunshine is related to the risk of cancer. 
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Note that the logic here is a variation of the logic of Mill's method of 

difference. Models 1 and 2 differ in only one independent variable, 

Sunshine. So if Model 2 fits the data better than Model 1, it must be 

due to this variable. The variable Age is statistically controlled since it 

is present in both equations. 

The sunshine-breast cancer hypothesis was supported by correlational 

research that used statistical controls for age and other variables 

linked to cancer. The hypothesis currently is undergoing a more 

rigorous experimental test by the National Institute of Health. Sixty 

thousand women are receiving either vitamin D and calcium 

supplements or a placebo in a 9-year experiment. Because this type of 

research does not expose subjects to harmful agents, there are no 

ethical problems to prevent its use with people. 

Yule's contribution to research methods was enormous. Least squares 

is now the most popular method of analysis in psychology. It is used, 

for example, in studies evaluating how well SAT scores can predict 

college grades, in studies predicting what kinds of patients will benefit 

most from psychotherapy, in studies predicting what types of 

prisoners will violate parole, and in studies of the link between stress 

and susceptibility to colds. Its applications are limitless. 

5.7 CORRELATION’S BAD REPUTATION 

We have seen that the correlation coefficient can be interpreted as a 

measure of similarity between two variables and as a measure of the 

degree of accuracy in predicting one variable from another assuming a 

linear relationship. However, sometimes scientists wish to go beyond 

these interpretations to infer cause-and-effect relationships between 

the variables being correlated. Scientists can run into problems here. 

To understand how, let's try to state the logic of correlation in the 

language of Mill's methods of induction. As you remember from 

Chapter 2, Mill's methods have an if. . . then . . . format. If specific 

observations are made, then you can reach a specific conclusion. Let's 

try this for correlation: 

If you observe each of n subjects on two variables, V1: and 

V2, and compute the correlation coefficient, r, and find that r 
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is not zero, then you can conclude that V1 and V2 are related 

by . . . 

How should we finish the conclusion? If V1 and V2 are correlated, 

what exactly does this mean? It is possible that V1 is the cause or part 

of the cause of V2; or vice versa, V2 might be the cause of V1; or V1 

and V2 both might be caused by a third variable, V3; or V1 and V2 

might not be linked by any fact of causation. There is no single 

conclusion that follows logically from the fact that two variables are 

correlated. We cannot write a simple ending for our method of 

induction. This ambiguity in what correlation implies about the 

relationship between variables is the reason for correlation's bad 

reputation. 

To better understand correlation, we need to be familiar with the 

variety of relationships between variables that can lead to correlation. 

Let's start our discussion by looking at how Galton used the relation of 

causality to interpret his own results on heredity and Bertillonage. 

5.7.1 Causal Relationships 

Common cause. Galton's first correlations were computed comparing 

different relatives on the same variable, height for parents, V1 and 

height for their children, V2; and comparing two variables, the sizes of 

different body parts for the same people, for example, length of the 

right arm, V1, and length of the left arm, V2.  In both cases, Galton 

interpreted the correlations as being due to a common cause; V1 and 

V2 correlate because both are caused, in part, by another factor that 

they share. Parents and children share the same genetic material, 

which determines height. The lengths of both of a person's arms result 

from the same biological process of growth. This process is shared by 

both arms. 

Common cause is a popular explanation for why variables correlate. IQ 

test scores correlate with school grades, it is claimed, because both 

are influenced by the individual's intellectual skills. Two measures of 

extraversion correlate because both measure the trait of extraversion. 

However, variables may correlate for other reasons. Instead of sharing 

a common cause, one variable may directly cause, or at least be 

involved in the cause, of the second variable. 
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Direct causation. Suppose we visit a New Year's Eve party. Just after 

midnight, we interview the revelers to find out how many drinks they 

have had, V1, and administer a blood test for alcohol, V2r No doubt the 

correlation between V1 and V2 will be high, maybe r = +.90. People 

who have had many drinks will have a high concentration of alcohol in 

their blood; teetotalers will have no alcohol in their blood. Does this 

correlation indicate a common cause? In other words, is there a third 

factor that causes people to drink and also causes alcohol to form in 

the blood? No, not at all—the relationship is simpler; the alcohol you 

drink goes into your bloodstream. This direct causation is the 

explanation for the high correlation. 

Partial causation. Correlations also are found when the causation is 

not as direct as in the alcohol example. "Partial causation" or "indirect 

causes" frequently occur in studies of risk factors for disease and 

psychopathology Several studies have shown, for example, that 

separation from a parent before age 11 increases a child's risk of 

developing depression as an adult. The separation may result from the 

death of a parent, divorce, or a temporary circumstance. 

Separation is called a "risk factor" here because separation before age 

11 (yes or no), V1 is correlated with adult depression (yes or no), V2. 

Approximately 40% of depressed adults report separation from a 

parent as a child (Roy, 1981); many children separated from a parent 

do not develop depression, though, and many depressed adults were 

not separated from their parents as youngsters. 

Although separation and depression are related, the correlation in this 

case does not reflect a common cause or direct causation; separation 

does not cause depression in itself. The relationship is understood 

instead as one of partial causation: For some children, separation 

initiates a chain of events that eventually leads to depression. But why 

this occurs for some children and not others is a mystery; 

circumstances other than the separation must be involved. 

5.7.2 Noncausal Relationships 

Common cause, direct, and indirect causation involve cause-and-

effect relationships between variables; but other noncausal 

relationships can result in substantial correlations as well. 
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Correlation by chance. Correlations can occur between variables 

simply by chance. Let's say a scientist measures the visual acuity and 

height of 20 people and calculates r as +.60. For this group, the taller 

people have better eyesight than the shorter people. This correlation 

could result from bias in the selection of participants for the study; by 

chance, the group may include a disproportionate number of tall, 

eagle-eyed, and short, nearsighted people. With a larger, more 

representative sample of subjects, the correlation might be zero. 

This interpretation of a correlation as due to chance can never be 

entirely discredited, since there is always some possibility, even if very 

small, of getting a biased sample of subjects. Replicating the result 

with another group of subjects helps to discredit this explanation. In 

addition, there is a statistical test that allows the experimenter to 

investigate the credibility of the chance interpretation. This test 

calculates the probabilities of getting correlations by chance and uses 

these results to help decide if the observed correlation is due to 

chance or reflects a systematic relationship between the variables. 

Correlation by custom. Go out on a busy street corner and note for 

each of the men and women who walk by, V1t: M or F, the number of 

earrings worn, V2: 0, 1, 2 earrings, or more. Make perhaps 200 

observations. You can anticipate a substantial correlation between V1 

and V2.  Men will usually be wearing 0 or 1 earring, women 0 or 2 

earrings. Few woman wear 1 earring and few men wear 2 earrings. Is 

this a causal relationship? Hardly. 

This is a correlation due to fashion or custom. Since our culture makes 

sharp distinctions between men and women, there are many 

correlations between gender and other variables, such as interests, 

skills, and values; these correlations reflect the different experiences 

of men and women in our culture. We can call these examples 

correlations due to custom. Often they are easy to spot as noncausal 

because the variables form no logical causal chain or have no common 

cause. How, for example, can gender cause the number of earrings 

worn? But sometimes it is difficult to identify whether the relationship 

is causal or noncausal, especially in cases that involve a common 

correlate, as in the next example. 
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Common correlates. The psychiatrist Alfred Adler maintained that a 

person's personality was determined, in part, by birth order. 

According to his theory, firstborn children develop different 

personalities than later borns, because they have different 

relationships with their siblings and parents. Adler thought that 

firstborns were more ambitious, more responsible, more organized, 

and less peer oriented than people of other birth orders. One 

prediction, based on these ideas, is that there will be a correlation 

between birth order, V, and the occupational prestige of a person's 

job, V2, with firstborns having the higher prestige positions. 

This prediction has been supported. If you were to survey, say, 

physicians and car salesmen in your town, you would probably find a 

higher percent of firstborn physicians than firstborn salesmen. 

Adlerians would interpret this correlation as one of partial causality; in 

their view, experiences associated with different birth orders set up a 

chain of events terminating in the individual's employment. But there 

is another plausible interpretation of the correlation, one that has 

nothing to do with birth order or personality. 

The alternative explanation concerns money, the money it takes to 

become a physician or lawyer. It is known that families with more 

money have fewer children than families with less money; families 

with money, therefore, have a higher proportion of firstborn children 

than poorer families. (If you have just 2 children, 50% are firstborn; if 

you have ten children, only 10% are firstborn.) It takes money to go to 

college, and then on to medical or law school. Put these two facts 

together and you would expect to find more children of well-to-do 

parents in medical and law school, and lots of them should be 

firstborn! Since it takes less money to become a car salesman, there 

should be fewer firstborns in the showroom. 

This alternative hypothesis explains the correlation between V1 and 

V2  by evoking money as a common correlate. If we statistically control 

money, the correlation between V1 and V2  should be reduced to zero. 

Which explanation is right? We don't know. We would have to do 

further research to find out. And that is precisely the problem with 

correlational findings. After the fact, you usually can create several 

plausible, and distinctly different, explanations for any correlation you 
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find. Does the correlation reflect common cause, partial cause, 

chance, custom, or a common correlate? The answer will come only 

with more studies. This ambiguity in interpretation is behind the 

derogatory phrase "just a correlational study." 

But don't let these problems prejudice you against correlational 

studies. As we will see in the next chapters, all types of studies have 

their problems and all require additional research to provide further 

evidence in support of their conclusions. Although the history of 

correlational research is short, its successes have been great. 

Determining the severe consequences of smoking (over 1,000 deaths 

per day in the United States alone), discovering the role of fluoride in 

fighting cavities, and demonstrating that rapid eye movements are an 

index of dreaming, are all classic results of correlational research. 

5.8 KEY TERMS 

Regression to the mean 

Regression coefficient, r 

Regression line 

Scatterplot 

Bertillonage 

Independence of variables 

z scores 

Pearson correlation coefficient 

Method of least squares 

Linear versus curvilinear relationship 

Statistical control 

Multiple correlation coefficient 

Common cause 

Direct causation 

Partial causation 
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Correlation by chance 

Correlation by custom 

Common correlates 

5.9 KEY PEOPLE 

Francis Galton 

Alphonse Bertillon 

David Wechsler 

George Yule 

Alfred Adler 

5.10 REVIEW QUESTIONS 

1. Why was the constancy of the distribution of physical traits of plants 

and animals across generations puzzling to Galton? 

2. Describe Galton’s pea study and summarize its results. 

3. Galton was excited about discovering regression to the mean, but 

he was troubled about its implications for his program of eugenics. 

Why would Galton find regression troublesome? 

4. What were the differences between Galton’s study of peas and his 

study of people’s heights? Did Galton find regression to the mean for 

people? 

5. Sketch a scatterplot showing the relationship between parents’ and 

children’s heights (as adults) that Galton discovered. Draw the 

regression line on your plot. 

6. Why did Galton think the accuracy of Bertillonage may have been 

inflated? 

7. What would the value of the correlation coefficient be for two 

independent variables? 

8. Describe how Galton used z scores to demonstrate that height and 

head size are not independent. 
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9. Explain why Galton’s correlation analysis can be considered as a 

special case of the method of least squares. 

10. Describe the difference between a linear and a curvilinear 

relationship. Give an example of each. 

11. Describe ow age was statistically controlled in the study on 

sunshine and the risk of breast cancer. 

12 Explain how statistical control follows the logic of Mill’s method of 

difference. 

13. Describe five different relationships that can exist between 

variables that are correlated. Give an example of each. 

 


