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4 MEASUREMENT 

Until the phenomena of any branch of Knowledge have 

been submitted to measurement and number it cannot 

assume the status and dignity of a science.  Sir Francis 

Galton 

Many breakthroughs in science come directly from advances in 

measurement. Claims that sensory acuity is a sign of intelligence 

(Wissler, 1901), or that a mother's rejecting personality causes her 

child's autism (Schreibman & Koegel, 1975), or that prefrontal 

lobotomy effectively cures mental illness (Valenstein, 1986) are 

examples of theories that have been rejected after being evaluated 

using good measures. Improved measures of personality, intelligence, 

and cognitive abilities often lead to progress in understanding human 

behavior 

To do this, they combined three previously published paper-and-pencil 

measures into their own custom-made stress index. The measures 

were: (1) a life event scale, on which participants reported the number 

of stressful life events that they had experienced in the previous year 

(events such as divorce or the death of a close friend; (2) a perceived 

stress scale, on which they reported the extent to which their lives felt 

overwhelming; and (3) a negative mood scale, measuring the degree 

to which they felt upset, shaky, irritated, sad, etc. Participants' scores 

on the combined measure indicated their levels of stress, from high to 

low. Since each component was known to be reliable, the composite 

also was expected to be reliable. The validity of the composite was 

unknown. (Procedures for assessing the reliability and validity of 

measures are discussed in Chapters 5, Correlation, and 12, Planning 

the Study.) 

Cohen et al. decided to directly expose their high- and low-stressed 

subjects to disease by giving them nose drops containing an infectious 

dose of a respiratory virus and then quarantining them in hotel rooms. 

The subjects were told the nature of the study before volunteering; 

they knew that the virus was only a cold virus and would do no lasting 

harm; and they were paid for their participation. Exposing them to a 

measured dose of a virus, followed by a quarantine, ensured that high- 

and low-stressed subjects were exposed equally to the disease. The 
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alternative to this procedure, measuring exposure, would have been 

very difficult. 

Whether or not a subject was infected was determined by blood tests. 

Subjects were considered to be infected if the virus or antibodies to it 

could be isolated in their blood. A physician also rated the severity of 

the subjects' colds. 

The researchers also measured a variety of other variables so that if 

stress and vulnerability to the cold virus were found to be related, 

alternative explanations of the results could be tested. For example, 

because smoking affects susceptibility to disease, the amount of the 

chemical cotinine in the blood was measured; this is an accurate index 

of how much a person smokes. The participants also took two 

standard personality scales to check whether the stress index was 

measuring personality differences rather than stress. How much the 

subjects exercised, their diets, and the quality of their sleep also were 

assessed by questionnaire. 

All of the measures used in this study are subject to error, but to 

different degrees. The least error is expected for the measures that 

participants cannot influence, like the blood analysis. Such measures 

are called nonreactive. 

Measures are nonreactive if subjects can have no control or influence 

over their outcomes; that is, if the act of measurement itself cannot 

result in a reaction from the subjects that could bias the results. 

The questionnaires, interviews, and personality scales used in the 

study, by contrast, were reactive. 

Measures are reactive if they are made with the subjects' 

awareness, and if this awareness could lead to a bias in their 

results. 

Even seemingly small modifications in measurement can result in 

major scientific advances. In his studies of children's intelligence, jean 

Piaget (1952) switched from the standard measure, counting the 

number of correct answers on an intelligence test, to studying how 

children explain their answers, both right and wrong. With this 

change, Piaget started a line of research that revealed the logic of 
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children's thinking. B. F. Skinner (1938) observed the rate of bar 

pressing of pigeons and rats instead of choosing other possible 

measures of learning. This choice was critical for his discovery of the 

effects of different schedules of reinforcement. 

Given the importance of measurement, researchers must plan their 

measurement strategies with care. Independent and dependent 

variables must be operationally defined. Variables that the 

investigator is trying to control may have to be measured to ensure 

that they remain constant throughout an experiment. Even 

uncontrolled variables have to be measured if the experimenter plans 

on using statistical controls. Whether the results of a study are clear-

cut or not will depend in large part on the type and quality of its 

measurements. 

4.1 THE VARIETY OF MEASURES IN PSYCHOLOGICAL 

RESEARCH 

Psychologists have at their disposal all the measurement techniques 

that have been developed in the physical and medical sciences. They 

can use computer-controlled displays to study perception, radio 

telemetry to track wild animals, deep-sea sonar to follow whales, and 

magnetic brain imaging to study brain dysfunction in children with 

attention deficit hyperactive disorder. 

Psychologists also can choose from a vast assortment of psychological 

tests and observational schemes. Tests in Print IV (Murphy, Conoley, & 

Impara, 1994), a directory of the available commercial tests, lists over 

3,000 tests for comparing peoples' aptitudes, abilities, interests, 

emotions, sensory acuities, personalities, disabilities, attitudes, and 

disorders. The questions used in surveys often are published along 

with results so that other researchers can use them. Ethograms 

profiling the behavioral repertoires of different animals also are 

available. 

Psychological studies often use a combination of measures, some 

physical, some previously published psychological measures, some 

custom-made for the study. This blend of instruments is well 

illustrated in a study by Sheldon Cohen and his colleagues (Cohen, 

Tyrrell, & Smith, 1991) on the effects of psychological stress on 
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susceptibility to the common cold. The researchers faced two 

measurement challenges in their study: (1) how to measure or 

manipulate stress, and (2) how to measure or manipulate exposure to 

the cold virus. 

Ethically sound procedures for manipulating stress are severely limited 

and are not likely to result in the high levels of stress that would be 

needed to affect resistance to disease. Although it might be possible to 

show subjects a stressful movie or recount a sad story, for example, 

such brief events most likely would not have a lasting impact. An 

alternative would be to select participants who already have different 

levels of stress in their lives. Cohen et al. decided on this procedure.  

Participants who want to create a favorable impression on 

investigators, for example, might present themselves on 

questionnaires and personality scales as less stressed than they 

actually are. On the other hand, some people may exaggerate their 

problems to gain an investigator's sympathy. Another problem with 

reactive measures is that the measurement itself may change the 

subject, thereby introducing other kinds of error into the study. Filling 

out the questionnaire on exercise and diet, for example, could suggest 

the benefits of exercise and a good diet to participants, leading them 

to change their normal routines. 

Whenever possible, nonreactive measures should be used to 

supplement reactive measures. In the stress study, for example, the 

physiological measure of smoking, the amount of cotinine in the 

blood, served as a check on participants' self-reports of the number of 

cigarettes they smoked. The agreement between the results of these 

measures confirmed the validity of cotinine as an index of smoking 

and also helped to establish the self-report measure as valid for future 

research. 

The only problem with using nonreactive measures is that they may be 

difficult to obtain. To collect blood samples, for instance, requires that 

a medical professional be on hand; such intrusive procedures may not 

be suitable for most psychological studies. Other nonreactive 

measures, such as archival records or covert observation, may violate 

subjects' rights to privacy. And nonreactive measures simply are not 

available for many variables. Cohen et al. most likely did not include a 

nonreactive measure of stress because such measures have not been 
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developed. Webb, Campbell, Schwartz, Sechrest, and Grove's 1981 

book, Unobtrusive Measures: Nonreactive Research in the Social 

Sciences, is a good source of ideas on ways to measure nonreactively. 

When nonreactive measures are unavailable, multiple reactive 

measures should be considered. 

Checking the agreement between multiple measures of the 

same variable gives investigators a way to evaluate error. 

Agreement between the results of different measures establishes that 

the observations are not uniquely tied to a particular method. In 

psychotherapy evaluation research, for example, psychologists' ratings 

of their patients' improvement often are checked against the patients' 

own ratings. In the stress study, the severity of the participants' colds 

was rated both by a physician and by the subjects themselves. The 

close agreement between their ratings provided 2vidence for the 

validity of both measures. 

Cohen et al. found that a higher percentage of high- than low-stressed 

subjects caught cold after being exposed to the virus. This result was 

replicated with five types of viruses and shown not to be due to 

differences in the personalities, diet, exercise, or smoking habits of the 

high- and low-stressed subjects. The study provides perhaps the best 

evidence available to date that psychological stress can lower a 

person's resistance to disease. 

The results of this stress study were reported using numerical scales. 

The stress scale varied from 3, low stress, to 12, high stress; the 

severity of a subject's cold ranged from 0, no cold, to 4, severe cold; 

cotinine levels were recorded in parts per unit volume; scores on the 

personality scales were numbers in the range from 20 to 80; weight 

was measured in kilograms. Although these scales all involve 

numerical values, they are not interpreted or analyzed in the same 

way to interpret scale scores, researchers must know both the scale 

type of the measure and whether the scale construction is based on 

standards or norms. We turn first to the distinction between scale 

types. 
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4.2 SCALES OF MEASUREMENT 

The idea of different types of measurement scales was developed by 

S. S. Stevens (1946), a psychologist who studied sensation and 

developed many of the basic sensory scales used today. Stevens 

argued that there are four basic measurement scales: ratio, interval, 

ordinal, and nominal, distinguished from each other by four properties 

that determine how scores on the scale can be interpreted. The first 

property is equality. 

A scale has the property of equality if two subjects who are 

assigned the same score are equal on what is being 

measured. 

If Bob and Jane both are measured as 68 inches tall, then they actually 

are the same height. The scale of height has equality, the most basic 

property of a scale; without equality, you do not have a scale at all. 

The second property is rank order. 

A scale has rank order if higher scale scores always indicate 

more of what is being measured. 

The scale of height, for example, has rank order since higher numbers, 

69 inches, 70 inches, etc., indicate taller people. The numbers assigned 

to players on a basketball team do not. Player number 23 does not 

have more of a trait than player number 8. Although qualitative 

measures, like sex, sometimes are coded numerically, for example, 

Female 2, Male 1, these "scale scores" also do not have the property 

of rank order. 

The third property is equal intervals. 

A scale has equal intervals if equal-sized differences in scale 

scores always indicate equal-sized differences in the amount 

of what is being measured. 

For height, the difference between 69 inches and 71 inches, a 

difference of 2 inches, is the same as the difference in height between 
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52 and 54 inches. A scale with equal intervals has a constant unit of 

measurement. The Richter earthquake scale is an example of a 

common scale that does not have equal intervals. A difference of 1 

unit on this scale indicates an increase in the energy of the quake by a 

multiplication of 10, not the addition of a constant amount of energy. 

The difference in energy between a 6.0 and a 7.0 earthquake is much 

greater than the difference between earthquakes of 1.0 and 2.0 on the 

scale. The fourth and last property is equal ratios. 

A scale has equal ratios if ratios of scores are meaningful. 

Height has this property, so two heights can be meaningfully 

compared by computing their ratio. If Paul is 7 feet tall and Tim is 3.5 

feet tall, it is permissible to say that Paul is twice as tall as Tim. By 

contrast, ratios are not directly interpretable on the Richter scale. An 

earthquake of 6.0 is not twice as severe as a quake of 3.0; it is 1,000 

times more severe. 

We have numbered these properties from 1 to 4 to indicate their 

interrelationship. If a scale has property 4, it also must have all the 

properties with lower numbers, that is, properties 3,2, and 1. Similarly, 

if a scale has property 3, it must have properties 2 and 1; and if a scale 

has property 2, it must have property 1. Because of this structure, 

Stevens pointed out that the four properties describe only four types 

of scales. These scales are shown in Table 1 along with their 

properties. 

TABLE 1 SCALES OF MEASUREMENT AND THEIR PROPERTIES 

Property 

 1     2        3    4 

Scale Equality    Rank Order         Equal  

Intervals 

Equal 

Ratios 

Ratio Yes Yes  Yes Yes 

Interval Yes Yes  Yes No 

Ordinal Yes Yes  No No 

Nominal Yes No  No No 
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Ratio scales have all four properties. Many scales in the physical 

sciences, such as distance, weight, voltage, current, force, are ratio 

scales. These scales all lave a natural zero point; that is, a score of zero 

means the absence of the property; zero weight, for example, means 

literally no weight. Few of today's psychological scales are ratio scales; 

and the ratio scales we are familiar with, scales of sensations, like the 

sone scale of noise, were all constructed by Stevens himself. A noise of 

10 sones will sound twice as loud to the average person as a noise 

scaled 5 on this scale. 

Interval scales have properties 3, 2, and 1.  

The best known interval scales are Fahrenheit and Celsius 

temperature scales. Because the zero points on these scales do not 

correspond to the absence of heat, ratios cannot be computed to 

compare two temperatures; a 100-degree day is not twice as hot as a 

50-degree ay, for example. But the scale has a constant unit, so a 5-

degree difference, from 0 to 15 degrees, is the same increase in 

temperature as a 5-degree difference from 95 to 100 degrees. The 

Kelvin temperature scale, by contrast, does have an absolute zero, —

459.7 degrees Fahrenheit, the temperature at which all molecular 

motion stops. Ratios on this scale are meaningful; a 100-degree 

Fahrenheit ay (310.9 °K) is 1.1 times as hot as a 50 degree day (283.1 

°K). 

Whether a scale has interval properties is verified by experimentation. 

If an object with a scale score of, say, 5 is "added to" an object with a 

scale score of 10, for the scale to have the interval property the 

combination must yield a score of 15. For example, if a 5-pound object 

is placed on top of a 10-pound object, the combination will weigh 15 

pounds. For every interval scale, a process of combining, or adding, 

two objects to get a new third object must be found so that the new 

object's scale score is in agreement with arithmetical rules (see Cohen 

& Nagel, 1934). 

Research to verify scale properties is straightforward with measures of 

weight, length, voltage, etc., but has not been possible for 

psychological scales, like self-confidence, degree of depression, or 

intelligence. Consider intelligence; say Bob has an IQ of 80, Jill's 1Q is 



10 

60, and Mary's is 140. Is Mary's intelligence equal to the combination 

of Bob's and Jill's intelligence (80 + 60 = 140)? For this question to be 

meaningful, there has to be some concrete means to "add" IQ scores. 

For example, if Bob and Jill took the IQ test together could they get 

Mary's score? Probably not. Because no one has thought of a way of 

verifying the interval or ratio properties of such measures, such scales 

can only provide information about the rank ordering of people. 

TABLE 2 BEAUFORT WIND SCALE 

——'— Wind Speed  

Beaufort  (Km/hr)                   (mph)     Description 

0 below 1                  below  Calm 

1 1-5                            1-3 Light air 

2 6-11                         4-7 Light breeze 

3 12-19                       8-12 Gentle breeze 

4 20-28                      13-18 Moderate  

5 29-38                      19-24 Fresh breeze 

6 39-49                      25-31 Strong breeze 

7 50-61                      32-38 Moderate gale 

8 62-74                      39-46 Fresh gale 

9 75-88                     47-54 Strong gale 

10 89-102                    55-63 Whole gale 

11 103-117                   64-75 Storm 

12 above 117              above 75 Hurricane 

From Microsoft Encarta, 1994. 

Ordinal or rank order scales have properties 2 and 1.  

A newspaper may rank order best-selling books from 1 to 10. This 

scale does not have a constant unit and the ratios of scores are not 

meaningful. The 5th best-selling book does not sell twice as much as 

the 10th best-seller, nor are the differences in sales the same between 

1st and 2nd place as between 2nd and 3rd place. The Beaufort wind 

speed scale and the Mohs hardness scale are commonly used ordinal 

scales. The Beaufort scale, which is presented in Table 2, classifies 

wind speed into 13 categories from 0, calm, to 12, hurricane. You can 

see by looking at the, wind speeds that this is not a ratio or interval 
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scale. The difference between scale scores of 0 and 2,3 mph, is not 

equal to the difference between scale scores of 10 and 12, 12 mph. 

The Mohs hardness scale, presented in Table 3, is based on the 

operation of scratching one material against another. The harder of 

the two materials will scratch the other material, but not the other 

way around. Topaz will scratch quartz, but quartz is not hard enough 

to scratch topaz. A new material, like your fingernail, is measured by 

comparing it to these standard 10 materials. A fingernail will scratch 

gypsum but not calcite, so the scale score for a fingernail is 2.5. This 

scale does not have ratio or interval properties. It is an ordinal scale. 

TABLE 3 MOHS HARDNESS SCALE 

Mineral Hardness Common Tests 

Talc 1 Scratched 

Gypsum 2 by fingernail 

Calcite 3 Scratched by copper coin 

Fluorite 4 Scratched by a knife blade 

Apatite 5 or window glass 

Feldspar 6 Scratches a knife 

Quartz 7 blade 

Topaz 8 or 

Corundum 9 window glass 

Diamond 10      Scratches all common   

materials 

From Microsoft Encarta, 1994. 

The nominal scale only has property 1, equality.  

If numbers are assigned with these scales (e.g., Democrats = 1; 

Republicans = 2), they are only for convenience in naming. Nominal 

scale scores cannot be compared numerically. 

The type of scale used in measurement is critical because it limits the 

type of analysis that is possible on the scale scores. The mean and 

standard deviation, for example, are not meaningful when computed 

on scores from nominal and some ordinal scales. If you were to rank 

order 10 people on intelligence and compute the mean of the 
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rankings, you would get a mean of 5.5. This number would reflect only 

the number of subjects studied and would say nothing about the 

average intelligence of the 10 people. Because nominal scales and 

many ordinal scales do not have normal distributions, statistics that 

assume this type of distribution are not recommended for use with 

them. Specific statistical procedures have been developed for 

analyzing data for these types of scales (see Liao, 1994). 

4.3 STANDARD AND NORM BASED SCALES 

Physical measures are based on standards, objects with known 

properties that serve as the official definition of the unit for measuring 

the property. Prescientific standards were the foot, literally a person's 

foot, the hand width, and the distance from the elbow to the end of 

the middle finger, the cubit. Today's standards are considerably more 

precise. The meter is defined as the distance traveled by light in a 

vacuum in 1/299,792,458 of a second (Wikipedia). The kilogram is 

defined by a cylinder of platinum-iridium alloy kept in France. 

Psychological measures are not based on such standards. There is no 

person housed in Washington, D.C., who is the standard for "average 

neuroticism," although most people could nominate an acquaintance 

for this standard. Psychological measures are norm-based, meaning 

that the score for an individual is interpreted by comparing his/her 

score with the scores of a group of people who define the norms for 

the test. A person scores average on an intelligence test whose score 

is equal to the average of this group of people. 

Norm-based measurement is unique to psychology and other social 

sciences. Although we know of no physical measure that is interpreted 

with norms, this type of measurement is common in psychology. In 

developing the Wechsler intelligence scales, for instance, the tests 

(there are three tests to span the age range from young children to 

adults) were given to a representative national sample of people of 

different ages. Their performances set the norms, that is, what is 

considered a high, average, or low score on the test. 

The logic of norm-based tests was developed in the mid 1800s by Sir 

Francis Galton. Galton also developed the basic statistics for reporting 

norm based scores—percentiles—and the statistic used in determining 
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the reliability and validity of measures—the correlation coefficient. In 

the next section of this chapter, we discuss how Galton made these 

discoveries and explain the logic of norm-based tests. This logic is 

essential for understanding modern psychological measurement and 

analysis. 

4.4 THE BEGINNINGS OF NORM-BASED MEASUREMENT 

Galton got involved in measuring individual differences because such 

measurement was essential to the success of his scientific program to 

improve the human race. Galton defined the nature extreme in the 

nature versus nurture debate—the question of whether differences 

between people in abilities, attitudes, and other characteristics are 

due to experience (nurture) or biological inheritance (nature, Galton's 

position). It was Galton who introduced the word heredity into English 

(from the French) to refer to the process of biological transmission of 

traits from parents to offspring. 

Given his extreme biological position, it is not surprising that Galton 

saw educational programs as a waste of time and money. For Galton, 

social reform required intervention in the process of breeding itself. 

He coined the word eugenics (the science of improving the human 

race by judicious mating and other means that give more suitable 

people the advantage in having children) to name such reform. His 

eugenics program would encourage desirable people to have many 

children and discourage undesirable people from having any children 

at all. Then, by virtue of the laws of heredity, the human race would 

improve generation by generation. To carry out his program, Galton 

needed to discover the laws of heredity. The then "state of the art" 

experimental methods of John Stuart Mill were not useful to Galton. 

Galton's problems in heredity could not be stated in terms of cause 

and effect. The characteristics of parents do not cause the 

characteristics of their offspring in any one-to-one manner. Galton 

needed methods for measuring traits and other methods for dealing 

with the co-relation or correlation between the traits of parents and 

offspring. He wanted to know, for example, if parents were intelligent, 

what that implied about the intelligence of their children. Galton had 

to invent these methods. 
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Galton's grandfather had amassed a fortune selling muskets to the 

British army during the war against Napoleon; the grandfather's 

factory turned them out at the rate of one per minute. When his 

father died, Galton inherited his share of the family fortune, which 

was enough so that he did not have to work again, he quit medical 

school and devoted his life to science (Galton, 1909). Galton's wealth 

was the capital that financed the beginning of statistics in the social 

sciences. (Students today might wish England hadn't needed so many 

muskets!) 

Galton's wealth financed his scientific work on a wide range of topics, 

including geography and meteorology. After he read Origin of the 

Species in 1859, book his cousin, Charles Darwin, has just published, 

his interests focused on eugenics. In Darwin's theory, the future of a 

species is determined by natural election—the survival of the fittest. 

Galton thought it would be an error to trust le future of the human 

race to the capriciousness of natural selection. It would be a far better 

world, he argued, if the future were engineered through eugenics. 

Galton's work on methods stemmed directly from problems he faced 

in his eugenics program: 

• Galton wanted a way of describing the scores of a large 

group (population) of people on a trait like intelligence. This 

description would be the standard of comparison for any 

future changes on the trait brought about by eugenics. 

• He needed a way of describing the degree of change on the 

trait, so he could find out if future generations were 

improving compared to the present one. His programs would 

be evaluated by these changes. 

• He needed a quantitative measure of intelligence. This 

measure was needed to select the people to encourage to 

breed. 

• He needed to identify which traits were biologically 

determined, because these were the traits that eugenics 

programs could influence. To do this, he had to find a 

measure of the degree to which offspring are similar to their 

parents on a trait. 
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Galton's eugenics program is history, but his methods are now basic in 

modern research. 

In the early 1860s, Galton began studying the inheritance of 

intelligence, there were no established measures of intelligence at 

that time. (The Binet-Simon scale was not available until 1911.) Galton 

had to find one. He settled for eminence, "high reputation," as his 

measure. He decided to examine the family trees of eminent men—

judges, statesmen, scientists, etc.—to see if eminence "ran in 

families." The answer was yes. Galton found for judges that: 

More than one in every nine of them have been either father, son 
or brother to another judge. . . . There cannot, then, remain a 
doubt but that the peculiar type of ability that is necessary to a 
judge is often transmitted by descent. (Galton, 1864/1892, p. 62) 

Galton found similar results for other categories of eminent men. We 

now know that this result, that eminence runs in families, does not 

necessarily mean that it is biologically inherited. Families share a 

common culture as well as common genes. Galton ignored the latter 

possibility and concluded that intelligence is highly heritable. 

4.5 DESCRIBING INDIVIDUAL DIFFERENCES 

Galton was happy with the results of his study of eminence, but he 

was not satisfied with using ratings of "eminent" or "not eminent" to 

measure intelligence. He wanted to study heredity with quantitative 

measures. His dream was to obtain "exact measurements relating to 

every measurable faculty of body or mind, for two generations at 

least" (Galton, 1909, p. 244). 

To this end, Galton set up a unique laboratory in London at the 

International Health Exhibition. For threepence, visitors to his 

laboratory could take a series of tests and measures, and compare 

how they did with the results from other visitors. Galton's 

measurements included hearing and visual acuity; color sense; 

reaction time; pulling, squeezing, and hitting strength; as well as 

height, weight, and arm span. 

On first reading, it seems that this list of measures did not include the 

one trait of most interest to Galton—intelligence. Not so. For Galton 
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had included measures of sensory acuity and reaction time, the 

measures thought by scientists of his day to be the best indicators of 

intelligence. Scientists believed that intelligent people were quick to 

react and, like the fairy-tale princess who could feel a pea through a 

stack of mattresses, highly sensitive to stimuli. Retarded people were 

expected to be slow and insensitive. 

4.5.1 Percentiles 

Galton wanted to let visitors to his exhibit compare themselves to 

other visitors. To do this, he developed a novel statistical method 

called centiles or percentiles. 

Percentiles are calculated from a group of scores. First, all the scores 

are rank ordered from high to low; then they are divided into 100 

groups, with an equal number of scores in each group. If 500 people 

were tested, each of the 100 groups would contain 5 scores. The 

values dividing these groups are called percentiles and are numbered 

from 0 to 100. 
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A percentile is one of the values that divide a set of scores 

into 100 groups of equal frequency.  One percent of the 

scores fall below the value of the 1st percentile, 2% fall below 

the 2nd percentile, 80% fall below the 80th percentile, and so 

on. 

The 50th percentile, called the median, divides the scores 

into two equal sized groups; 50% are below the median, and 

50% above. 

For the heights of males, Galton found that the 50th percentile was at 

67.9 riches, the 70th percentile at 69.2, and the 90th percentile at 

71.3. A visitor who was 69 inches tall would know that about 70% of 

the visitors were shorter and 30% were taller than he was. 
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Galton's laboratory at the International Health Exhibition. 

Table 4 shows the results for some of Galton's measures, collected in 

1884. Besides the simplicity of the percentile system, what is striking is 

the marked difference in the size of people just over 130 years ago. 

Back then the 50th percentile for men's weights was 143 pounds; 

today the 50th percentile man weighs 191 pounds! 
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No one could have devised a simpler method for conveying a person's 

relative standing on a measure, and no one has since. Educators today 

still use Galton's percentiles to report the results of standard tests, 

such as the SATs; physicians use percentiles to evaluate the height and 

weight of children; and psychologists use these statistics to describe a 

person's standing on all kinds of measures of personality and ability. 

4.5.2 The Normal Distribution 

When the exhibition closed, Galton moved his laboratory to the South 

Kensington Museum, where he collected data for six more years. He 

used the data for a variety of projects, including replicating a 

remarkable discovery that had been made some 30 years earlier by M. 

A. Quetelet, a Belgian astronomer. 

 

FIGURE 1 Histogram of the circumferences of the chests of Scottish 

soldiers (based onQuetelet, 1849). 

Quetelet discovered that differences between people in height and 

other physical measures have a simple mathematical form—a form 

that allows accurate description of the physical characteristics of 

thousands of people using only two numbers (Quetelet, 1849). In one 

demonstration Quetelet arranged the chest circumferences of 5,738 

army recruits in a special pattern which we now call a histogram. 
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A histogram is a graph showing the frequency of occurrence 

of different values of a measure.  

The graph is made up of a series of rectangles; the width of each 

rectangle indicates an interval of values on the measure and the 

height of the rectangles is in proportion to the frequency of cases that 

have values in that interval of scores. 

Quetelet took the continuum of chest measures from 33 to 48 inches 

and divided it into a series of consecutive categories each with a width 

of 1 inch. He then placed each of his 5,738 measurements into its 

appropriate category. 

The resulting histogram (shown in Figure 1) had a "bell-curve" shape 

that was familiar to Quetelet. Astronomers had been using this curve 

to describe the distribution of errors they made, for example, in 

locating stars in the heavens. It was called the normal distribution or 

Gaussian distribution (after the mathematician Carl Gauss). 

A normal distribution is a theoretical frequency distribution 

that is specified by a mathematical equation. The distribution 

has the shape of the cross-section of a bell; the high point of 

the curve is at the median, and the curve is symmetric 

around the median. 

The form of the ideal normal distribution, shown by the dotted line in 

Figure 1, is described mathematically by a formula that depends upon 

only two values, the mean and standard deviation of the measure. 

The mean is the average value of a measure. It is computed 

by adding all the scores and dividing by the number of scores. 

For a normal distribution, the mean is equal to the median; this is not 

true for every distribution. 

The standard deviation is an index of the width of a 

frequency distribution. The smaller the standard deviation, 

the closer the scores cluster around the mean score. The 
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greater the standard deviation, the greater the differences 

between the scores and the mean. The standard deviation is 

computed by calculating the average squared distance of the 

scores from the mean and taking the square root of this 

value. 

The mean's location on the histogram in Figure 1 is shown with the 

letter M; here it is the average chest size of recruits. The standard 

deviation is the distance, in units of the trait being measured (for chest 

size the unit is inches), from the mean to the place on the curve 

marked by M + SD. The height of the normal curve at M + SD is about 

60% of its height at M, its maximum height. 

4.5.3 Percentiles and the Normal Curve 

Galton could have used Quetelet's normal distribution method to 

describe the distribution of peoples' scores on his measures; there is a 

mathematical relationship between the normal curve and percentiles, 

the measure that Galton preferred. Percentiles can be calculated from 

the mean and standard deviation of normally distributed traits. Figure 

2 shows that the mean is at the 50th percentile; M + SD is at the 84th 

percentile; M - SD is at the 16th percentile. 

Once the values of M and SD are calculated for a measure, the values 

at various percentiles can be read from Figure 2. Using Galton's data 

for the height of males, M = 67.9 inches and SD = 2.5 inches; so the 

16th percentile is M - SD = 67.9 - 2.5 = 65.4 inches; the 50th percentile 

is 67.9 inches; and the 84th percentile is M + SD = 67.9 + 2.5 = 70.4 

inches. Figure 2 also shows the percent of cases falling within intervals 

expressed using M and SD. 

Galton published the results of his measurements at the exhibition 

using percentiles rather than means and standard deviations. He did 

this because he thought percentiles would be easier for people to 

understand and use to determine their standings on the measures. Yet 

in scientific journals today, it is the mean and standard deviation, not 

percentiles, that are used routinely to describe distributions. The 

reason is that these statistics afford a more economical description 

than percentiles; only two numbers, M and SD, are needed to 

generate all the percentiles (for normal distributions). 
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4.5.4 Why the Normal Distribution Is So Common 

Galton's explanation for why human characteristics are normally 

distributed was different from Quetelet's. Quetelet thought that 

"errors of creation" had a normal distribution because this distribution 

was characteristic of all errors. Galton based his explanation on a 

mathematical theorem discovered by Carl Gauss. Gauss's central limit 

theorem was concerned with the distribution of a variable that is 

formed by adding together a series of other variables. Gauss showed 

that such aggregate variables would tend more toward a normal 

distribution as the number of variables added together became larger. 

This would occur regardless of the distribution of the variables being 

added together. The theorem predicted that, in practice, any 

aggregate of variables would have approximately a normal 

distribution. 

Height and weight, the measures studied by Quetelet and Galton, 

were such aggregates. Height is the sum of the heights of a series of 

body parts, the height of the foot bone plus the ankle bone, etc., up to 

the head bone. Weight is the sum of the weights of all separate body 

parts. Today many psychological measures are purposely constructed 

so that the score on the scale is an aggregate of other scores. Scale 

scores then will tend to have a normal distribution. This method of 

scale construction is discussed in the next section. 

The discovery that many human characteristics are normally 

distributed was exciting to Galton because it showed that individual 
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differences follow exact mathematical laws. Quetelet's beautiful 

results were possible because of quantitative measures. Galton was 

impressed with Quetelet's work. He thought that progress in studying 

heredity also would come only with refinements in measurement that 

would allow quantification of complex human traits, like intelligence. 

This view is not unique to Galton. It is shared by many scientists. Peter 

Medawar, for example, who has written extensively on the scientific 

method, concludes: 

The art of research is that of making a problem soluble 

by finding out ways of getting at it. . . . Very often a 

solution turns on devising some means of quantifying 

phenomena or states that have hitherto been assessed 

in terms of "rather more," "rather less," or "a lot of," or 

workhorse of scientific literature—"marked." 

(Medawar, 1979, p. 18) 

4.5.5 Galton's Scaling Method 

Height and weight are easily quantified, but Galton was not 

particularly interested in these variables; they were simply convenient 

to try out his methods, Galton wanted to study intelligence. Like 

height and weight, intelligence could be considered an aggregate—an 

aggregate of different skills, such as sensory acuity, quick thinking, 

ability in arithmetic, problem solving, etc. He expected that a 

quantitative measure of intelligence would show the normal 

distribution; jut no measures were available to test this hypothesis. 

To construct a quantitative interval scale of intelligence, Galton 

devised a clever method of scaling that would produce an interval 

scale from an ordinal rank order scale. The ordinal measure would 

come from teachers' judgments of their pupils. One hundred pupils, 

say would be assigned a score from 1 to 100 to indicate their rank 

order; the student with the highest intelligence would get a score of 

100. 

These ordinal scores then would be transformed to an interval scale of 

intelligence using the properties of the normal curve. First, the student 

with average intelligence, the one who scored 50 on the ordinal scale 

(the 50th percentile in the group of 100 students), would be given an 
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arbitrary intelligence score of, say, 100. Next, the student who scored 

84 on the ordinal scale (the 84th percentile) would be given an 

intelligence score one standard deviation above the mean, since the 

84th percentile is exactly one standard deviation above the mean on 

the normal curve. Setting the standard deviation to 15, this student 

would be assigned a score of 100 + 15 = 115. The value of 15 is 

arbitrary. Any positive number could be chosen for the standard 

deviation. The rest of the scores are not arbitrary; the remaining 

scores on the ordinal scale would be converted to intelligence scores 

by translating their percentile scores to the corresponding scores a 

normal distribution with a mean of 100 and a standard deviation of 15. 

For example, an ordinal score of 98 (the 98th percentile) is two 

standard deviations above the mean, and would be assigned a score of 

100 + 15 + 15 = 130. An ordinal score of 16 would get an intelligence 

scale score of 100 - 15 = 85. This new scale, Galton argued, would be 

an interval scale of intelligence. In support of this conclusion, he 

showed that this method would work for physical characteristics, like 

height and weight. If you rank order 100 people on height and then go 

through the scaling procedure, you will end up with an interval scale 

of height. So Galton expected the method to work for intelligence as 

well. In discussing Galton's scaling method, Stigler (1986) points out 

that his argument is based only on an analogy to height. It is not 

necessarily true that if the method works for height it also will work 

for intelligence. Direct evidence is needed that the intelligence scale 

has equal intervals. As we mentioned earlier, such evidence has not 

been found. 

Since Galton's method requires the judges to be familiar with the 

intelligence of all the students (to rank order them), such a method 

would be impractical for measuring intelligence in clinical work. 

Clinicians need measures that can be administered to one person, or 

to larger samples for research. But a practical variant of Galton's 

procedure is used in modern measurement: A questionnaire is devised 

that is made up of a series of, say, 50 to 100 items, and presented to 

subjects one at a time. The items for an ability test could be problems 

to solve; for a personality test, questions about feelings, beliefs, and 

behaviors. Each item is scored either 1 or 0, depending on the 

subject's answer. A "correct" answer gets the higher score. The 

subject's score on the scale is the sum of the item scores. Since this is 
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an aggregate score, it would be expected, by the central limit 

theorem, to tend to have a normal distribution and, following Galton's 

logic, to be an interval scale. 

The Wechsler Adult Intelligence Scale (WAIS), today's most popular 

clinical scale, consists of a series of items from different content areas 

related to intelligence: vocabulary, general information, arithmetic 

problems, similarities, etc. The subject's scores on the individual items 

are added together to give a total score for the test. Since these scores 

are aggregates, they are normally distributed. Similarly, the Minnesota 

Multiphasic Personality Scale, MMPI, the most popular measure of 

personality, consists of over 500 true/false items. The scores on 

particular sets of items are added to form aggregates measuring 

personality traits that have normal distributions. 

4.6 NORMAL OR NON-NORMAL? – THE LOGIC OF STATISTICAL 

TESTS 

Quetelet's and Galton's demonstrations that human characteristics 

have normal distributions, together with the work of astronomers and 

other scientists showing that this distribution describes errors of 

measurement, resulted in the normal distribution acquiring almost a 

cult status. In the 1890s, scientists revered the normal distribution as a 

"universal law of nature," a distribution with limitless applications. 

Usually when extravagant claims are made in science, there are 

skeptics ready to challenge them. In this case, the skeptic was Karl 

Pearson, Galton's friend, colleague, and fellow eugenicist. Pearson had 

a clear interest in showing that the normal distribution did not have 

limitless applications. In fact, he had developed an elaborate system of 

equations for describing different nonnormal distributions. 
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FIGURE 3 

Skewed distribution of buttercup petals. (From Pearson, 1900.) 

Pearson knew that many distributions of natural events are not 

normally distributed. One whimsical example he cited (Pearson, 1900) 

was the distribution of buttercup petals, which is a skewed 

distribution, not a normal distribution. 

In a skewed distribution, the mean and median are not equal, 

as they are in the normal distribution. A distribution is 

positively skewed if the mean is greater than the median and 

negatively skewed if the mean is less than the median. 

Figure 3 shows the positively skewed distribution for 222 buttercups. 

Pearson suspected that the data cited by other scientists to 

demonstrate normal distributions really were not a good fit to the 

normal curve either! Professor Merriman, for example, illustrated the 

normal distribution of errors using data from one thousand rifle shots 

at a target by soldiers of the U.S. Army. For this demonstration, 

different areas of the target were marked with the numbers from 1 to 

11. Table 5 shows the number of shots that hit each of these different 

areas, called the observed frequencies, and the number of shots that 

were expected to hit these areas if the distribution of errors was 

normal, the expected frequencies. 

If you compare the observed and expected frequencies, they look 

fairly close. As expected, the highest number of shots, 212, hit area 6, 

and areas 1 and .1 were hit the least number of times, also as 
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expected. The observed and expected frequencies for the other areas 

also appear to be in close agreement. 5ut visually comparing the 

frequencies is not an objective procedure. Different people certainly 

would disagree, as Pearson and Merriman did, on whether the 

observed frequencies were a good fit with the expected frequencies. 

What was needed, then, was an objective test to resolve such 

differences of opinion. Pearson developed such a test, the first widely 

used statistical test. 

A statistical test is a mathematical procedure to compare 

observed results with theoretically expected results in order 

to reach a conclusion as to whether or not the observations 

fit the theory. 

TABLE 5 DISTRIBUTION OF SHOOTING  

ERRORS (FROM PEARSON, 1900) 

Area Observed 

Frequency 

Expected Frequency 

for Normal Distribution 

1 1 1 

2 4 6 

3 10 27 

4 89 67 

5 190 162 

6 212 242 

7 204 240 

8 193 157 

9 79 70 

10 16 26 

11 2 2 

The test Pearson developed for this case is now called the Pearson chi-

square, X2, test. (The Greek letter chi is pronounced ki.) 

The first step in the test is to state exactly the theory or hypothesis to 

be tested. For Pearson, the hypothesis was that the shooting errors 

had a normal distribution. The second step was to calculate a test 

statistic, a numerical value, to measure the similarity between the 

observed frequencies and the expected frequencies. This statistic is 
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called X2. It is calculated by subtracting each corresponding observed 

and expected frequency squaring these differences, dividing by the 

expected frequency, and then adding up the values. 

The formula for X2 is: 

X2 = ∑ (O - E)2/E 

where O is an observed frequency, E is the corresponding expected 

frequency, and the summation is over the set of observed frequencies. 

The smaller the value of X2, the less the discrepancy between the two 

sets of frequencies, and the better the fit between the observations 

and the normal curve. When X2 = 0, the corresponding frequencies are 

equal. Using Professor Merriman's data, Pearson calculated X2 = 45.8. 

Next, Pearson determined what values of X2 to expect if the 

distribution of shooting errors was normally distributed. Note that 

even if the errors are really normally distributed, we would not expect 

X2 to be exactly zero. Pearson showed that in this case X2 is expected 

to be a small positive number and to vary, sometimes being larger, 

sometimes smaller, over replications of the study. Pearson figured out 

the exact probability distribution of X2, assuming the distribution of 

errors was really normal (see Figure 4). 

This distribution shows that values of X2 from, say, 3 to 15 are most 

likely to occur, while large values of %2, indicating a poor fit, and 

values of X2 close to zero, indicating an extremely good fit, are unlikely 

to occur. 

 

FIGURE 4 
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The distribution of chi-square if the shooting errors have a normal 

distribution. 

The third step was to compare the calculated value of X2 with the 

probability distribution of X2- The calculated value was 45.8. The 

probability distribution shows that this is a very unlikely value. 

Pearson determined that the probability. p, of getting this value or an 

even larger value (X2 > 45.8) was only .00000155. 

Pearson based his decision about whether the distribution of shooting 

errors was normal or not normal on the probability, p. We do the 

same thing today in all statistical tests. We call p the significance 

probability. 

The significance probability, p, is the probability, if the 

hypothesis being tested is true, of getting the observed value 

of the test statistic or an even larger value. (The larger the 

value of the test statistic the poorer the fit of the data to the 

hypothesis being tested.) 

In this case, the hypothesis being tested is that the distribution is 

normal. If p is too small, say, .05 or less, the fit is not good; that is, the 

observed data would be quite unlikely to occur if the distribution were 

normal. If, however, p is relatively large, greater than .05, then the fit 

is satisfactory, and the conclusion would be that the observed 

frequencies have an underlying normal distribution. The cutoff point 

of .05 is called the alpha level, α, of the statistical test. 

The alpha level is the critical value of p used in the statistical 

test. If p is equal to or smaller than the value of α (p < α), the 

hypothesis being tested is rejected; if p is greater than α (p > 

α), the hypothesis is not rejected. The alpha level is set by 

the experimenter before conducting the test. The value α = 

.05 is commonly used. 

Pearson furnished a table that allows researchers to determine the p 

value for any calculated value of X2 for several different values of α. 

This chi-square table is published in modern statistics texts. 
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For Professor Merriman's data, p was very small, well below .05. In 

Pearson's words: 

If shots are distributed on a target according to the 

normal law, then such a distribution as that cited by 

Mr. Merriman could only be expected to occur, on an 

average, some15 or 16 times in 10,000,000 trials. 

(Pearson, 1900, p. 355) 

Although the data appeared to confirm the hypothesis that they were 

normally distributed, Pearson's test indicated that, in fact, the 

distribution was not normal. Pearson had made his point, and the 

hypothesis that the errors had a normal distribution was rejected. The 

normal distribution was not a universal law of error. 

You might expect that Pearson's demonstration would have resulted 

in a decline in the popularity of the normal curve, but this did not 

happen. In fact, the normal curve still is the major probability 

distribution taught today. The routine use of the mean and standard 

deviation to describe scores is based on the normal distribution being 

a good approximation to the actual distribution of the scores. 

So Pearson's conclusion that the normal curve should have a narrow 

application in science was not convincing. Ironically, his X2 test, the 

method he used to reach this conclusion, became immensely popular. 

It has become a standard method for analyzing non-normal data, that 

is, data from ordinal or nominal scales. The X2 test is used, for 

example, in modern medical studies to see if a particular high 

incidence of a disease at a particular place is more than the frequency 

expected by chance. In studies of birth order, the test is used to study 

whether firstborns are more likely to be eminent than people with 

other birth orders. These are just two of the many possible 

applications of the X2 test. 

The use of statistical tests in data analysis is now virtually universal, 

and these tests have become standard for comparing observations 

with theoretical expectations. The most popular tests assume that the 

observed scores being analyzed are normally distributed. 

In 1984, the Association for the Advancement of Science published an 

issue of their journal Science 84 celebrating the top 20 discoveries of 
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the 20th century that have made a "significant impact on the way we 

think about ourselves and our world" (Hammond, 1984). The award 

winners included antibiotics, nuclear fission, Einstein's theory of 

relativity, the computer, television, birth control pills, and Pearson's 

chi-square test! In presenting the award for Pearson's discovery, Ian 

Hacking (1984) wrote: 

The chi-square test was a tiny event in itself, but it was 

the signal for a sweeping transformation in the ways 

we interpret our numerical world. . . . For better or 

worse, statistical inference has provided an entirely 

new style of reasoning. The quiet statisticians have 

changed our world—not by discovering new facts or 

technical developments but by changing the ways we 

reason, experiment, and form our opinions about it. 

(Hacking, 1984, p. 70) 

 

4.7 KEY TERMS 

Reactive and non-reactive measures 

Multiple measures 

Scale properties: equality, rank order, equal intervals, equal ratios 

Scale types: ratio, interval, ordinal, and nominal 

Standard vs. norm-based measures 

Eugenics 

Percentiles 

Median 

Histogram 

Normal distribution 

Mean, Standard deviation 

Aggregate measures 
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Central limit theorem 

Skewed distributions, positive and negative 

Statistical test 

Pearson’s chi-square, X2.,test 

Significance probability, p 

Alpha level, α 

 

4.8 KEY PEOPLE 

Sheldon Cohen et. Al. 

Francis Galton 

Charles Darwin 

S.S. Stevens 

M. A. Quetelet 

Carl Gauss 

Karl Pearson 

4.9 REVIEW QUESTIONS 

1. Cohen, Tyrrell,and Smith (1991) used multiple measures of their 

subjects’ smoking and the severity of their colds.  Explain why they 

used multiple measures. 

2. Classify the following measures as reactive or nonreactive. Explain 

your answers. 

Cotinine in the blood as a measure of smoking 
Self-report of stress 
Presence of antibodies in the blood 
Wechsler IQ test 
Subjects’ weight 

 
3. Describe the relationship between scale properties and scale types 

in Stevens’ classification of scales 

4. Identify the scale type and scale properties of the following: 
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weight in grams 
temperature in degrees Fahrenheit 
temperature in degrees Kelvin 
Richter scale 
Mohs hardness scale 
Beaufort wind scale 

 

5. Classify the following scales according to whether they involve 

standard or norm-based measurement: 

weight in grams 
Mohs hardness scale 
Wechsler Adult Intelligence Scale 
MMPI Depression scale 

 
6. Explain how Galton’s goal of developing a eugenics program led him 

to become interested in statistical methods. 

7. Describe Galton’s system of percentiles and explain why this system 

is important in norm-based measurement. 

8. What is the advantage of describing sets of scores with the mean 

and standard deviation rather than percentiles? When would 

percentiles be preferred? 

9. What percentiles correspond to the following scores on a normal 

curve? 

two standard deviations below the mean 
one standard deviation below the mean 
at the mean 
one standard deviation above the mean 
two standard deviations above the mean 

 
10. Compare Quetelet’s and Galton’s explanations for why human 

characteristics, like height, are normally distributed. 

11. Describe how you would construct an interval scale of creativity 

using Galton’s scaling method. Could you be sure that it was an 

interval scale? Why or why not? 

12. Describe the logic of Pearson’s chi-square test in your own words. 
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13. Explain why Pearson’s statistical test was selected by the 

Association for the Advancement of Science as one of the top 20 

discoveries of the 20th century. 


